Università
Discussioni su temi che riguardano Università della categoria Matematicamente
Algebra, logica, teoria dei numeri e matematica discreta
Discussioni su Algebra astratta, Logica Matematica, Teoria dei Numeri, Matematica Discreta, Teoria dei Codici, Algebra degli insiemi finiti, Crittografia.
Analisi matematica di base
Quando all'Università i problemi con la matematica tolgono il sonno, cerca aiuto qui
Analisi Numerica e Ricerca Operativa
Discussioni su Analisi Numerica e Ricerca Operativa
Analisi superiore
Discussioni su calcolo di variabile complessa, distribuzioni, Trasformata di Fourier, Teoria della misura, Analisi funzionale, Equazioni alle derivate parziali, Calcolo delle Variazioni e oltre.
Fisica, Fisica Matematica, Fisica applicata, Astronomia
Discussioni su argomenti di Fisica, Fisica Matematica, Astronomia e applicazioni della Fisica
Geometria e Algebra Lineare
Discussioni su problemi, esercizi e teoremi che riguardano la geometria, l'algebra lineare e la topologia
Informatica
Discussioni su argomenti di Informatica
Ingegneria
Discussioni su tematiche di ingegneria che non trovano collocazione specifica negli altri forum
Matematica per l'Economia e per le Scienze Naturali
Discussioni su argomenti di matematica per le scienze economiche e finanziarie, la teoria dei giochi, e per le scienze naturali
Pensare un po' di più
Spazio dedicato a problemi che vanno al di là dei semplici temi d'esame o degli esercizi standard.
Statistica e Probabilità
Questioni di statistica, calcolo delle probabilità, calcolo combinatorio
Domande e risposte
Ordina per
In evidenza
Salve,
sappiamo tutti, e si può facilmente vedere graficamente, che due funzioni inverse sono simmetriche rispetto alla retta y=x
Esiste una dimostrazione matematica?
Grazie

Ciao a tutti,
ho un dubbio sulle strategie miste nella teoria dei giochi. Nei manuali si legge che in un gioco a strategie miste i giocatori sono indifferenti tra tutte le strategie pure possibili. Il concetto mi è poco chiaro in termini intuitivi. Perché in un contesto stocastico i giocatori non potrebbero avere comunque delle preferenze?
Grazie mille per il chiarimento!
Luca

Buonasera, sto provando a dimostrare la seguente proposizione
Ogni successione a volori in $RR^n$ per cui sia convergente è limitata.
Dimostrazione: (Quello che faccio è un riadattamento del caso in cui $n=1$ )
Sia $l$ $in RR^n$, si ha per ipotesi che la successione ${\mathbf{x}^n}$ converge a $\mathbf{l}$, per definizione per ogni $0<epsilon<1$, esiste $N=N(epsilon)>0$ tale che $d(\mathbf{x}^n,\mathbf{l})<epsilon$ per ogni $n>N$, per cui ...

Buonasera, qualcuno saprebbe spiegarmi questo quiz? "Sia X1 una variabile con distribuzione uniforme su [0, 1] ⊆ R e X2 una variabile con distribuzione uniforme su [0, 2] ⊆ R. Se X1 e X2 sono indipendenti allora P[X1 > X2] è uguale a?" Sarà perchè sono arrugginito con gli integrali doppi ma la soluzione (che ho allegato) non la capisco
Buongiorno, per favore potete aiutarmi a risolvere questo problema?
Non capisco se nei punti A e B agisce il campo di un solo filo o se devo sommare i contributi vettoriali, se si poi come calcolo le energie cinetiche?
Si considerino due fili rettilinei, indefiniti, paralleli,
separati da una distanza d = 20 cm, uniformemente
carichi di carica positiva, con densità di carica lineare
uguali λ1 = λ2 = 0.1 μC/m, come in figura. Si considerino
due punti A e B fuori da piano individuato dai due ...

Ciao a tutti,
Una guida rettilinea di massa M = 9.0 Kg, inizialmente ferma, è libera di muoversi senza
attrito su un piano orizzontale. Un punto materiale P, di massa m = 1.2 Kg, viene fatto
scivolare con velocità iniziale v0 =1.0 m/s sulla faccia superiore della guida, caratterizzata
di un coefficiente di attrito dinamico µ = 0.1. Si calcoli:
a) il tempo t durante il quale P scivola sulla guida;
b) la velocità finale di P;
c) lo spazio percorso da P rispetto alla guida.
Provo a risolvere ...
(1) Si fissi un numero reale $a > 0$. Sia $GsubeOmeo(RR)$ il sottogruppo generato dall’omeomorfismo di $RR$ in sé definito da $x->x+a$ per ogni $x inRR$. Si provi che lo spazio topologico quoziente $RR//G$ rispetto a quest’azione è omeomorfo a $S^1$.
(2) Si fissi un numero reale $a > 1$. Si consideri l’azione del gruppo $ZZ$ su $(0, +infty)$ data da $(n,y)->a^ny$ per ogni $ninZZ$, ...

Per un sistema di due elettroni, si dimostri che gli stati definiti dai prodotti α(1)β(2) e β(1)α(2) non sono autostati dell’operatore di spin totale S^2
potreste darmi una mano?
a me viene che $ S^2α(1)β(2)= \ ћ^2α(1)β(2) + \ ћ^2β(1)α(2) $
è giusto?
Non so moltissimo di logica e teoria degli insiemi! Pertanto vorrei chiedere se qualcuno qui potrebbe spiegarmi/o aggiungere parole/correggermi se sbaglio a quanto segue:
L'"insieme complementare" è un oggetto ben definito nella teoria assiomatica degli insiemi?
Se definiamo l'universo \( U= \{ x : x = x \} \) e l'insieme vuoto \( \emptyset = \{ x : x \neq x \} \) allora abbiamo che \( \emptyset \) è un insieme mentre \(U\) è una classe propria (ovvero è una classe che non è un insieme). A ...

Buongiorno a tutti,
Un esercizio cita:
"Una pallina di massa m con velocità iniziale v entra in una buca semicircolare priva di attrito posta di fronte a sè nel terreno. Sapendo che dopo esser scesa di un tratto pari ad un angolo di $ pi/4 $ rispetto alla superficie di ingresso, il suo peso apparente è $ P_a $, esprimere l'altezza h da cui è partita in funzione delle grandezze sopra descritte."
Imponendo la conservazione dell'energia tra il livello di partenza (posto a h) e ...

Buongiorno, volevo porre due domande sulla disuguaglianza di cauchy schwarz.
Il punto su cui nutro dubbi è il seguente: nel testo che ho dice che l'uguaglianza della $|x*y|<=||x||*||y||$ si ha $<=>$ ($x=0$ or $y=0$ or $x=ay$ (cioè proporzionali con a reale)).
Ora il testo procede così:
(domanda1) prende $x=0$ e dice $0<=0$, discorso analogo per $y=0$ e quindi per questi due l'uguaglianza è verificata, perciò questo ...

Buongiorno, e perdonatemi se la domanda è sciocca, ma sono decenni che non studio l'Algebra con la A maiuscola.
Il piccolo teorema di Fermat dice che se $p$ è un numero primo, allora per ogni intero $a$:
\[
a^p \equiv a \mod{p}
\]
Su Wiki trovo scritto che una "piccola generalizzazione del teorema, che deriva immediatamente da questo", è la seguente: se $p$ è primo e $m$ e $n$ sono interi positivi con
\[
m \equiv n ...

Nell'insieme Z degli interi, la relazione di uguaglianza è simmetrica?
Io dico di sì, guardando la definizione di relazione simmetrica:
per qualsiasi coppia di elementi (a,b) scelta nell'insieme Z : aRb ==> bRa
Se scelgo a=b allora l'implicazione è vera : V ==> V
Se a =/= b allora l'implicazione è ancora vera , in quanto
F ==> F è Vera
E' corretto il ragionamento ?
Cioè io considero tutte le possibili coppie di elementi dell'insieme Z, non sono quelle che soddisfano la relazione.
Grazie
${0, 1}$ è aperto in $QQ$?
No, supponiamo per assurdo che ${0,1}$ sia aperto in $QQ$ ma allora $EEA$ aperto di $RR$ tale che ${0,1}=AnnQQ$. In particolare $EEa,b,c,dinRR$ tale che $0in(a,b)subeA$ e $1in(c,d)subeA$, per cui $(0,b)subeA$, $(c,1)subeA$. Se $(0,b)nn(c,1)=∅$ allora $1notin(0,b)$. Per densità di $QQ$ $EEqinQQ$ tale che $qin(0,b)$, per cui ...
Sia $f : X ->Y$ un’identificazione tale che la fibra di ogni punto di $Y$ ha cardinalità finita. Si provi che se $X$ è T1 allora anche $Y$ è T1.
Abbiamo che siccome $X$ è T1 allora ${x}$ è chiuso $AAx inX$. Per cui sia $yinY$ si ha che $f^(-1)(y)=uu_{x inf^(-1)(y)}{x}$ siccome è un unione finita (dato che $f^(-1)(y)$ è finito $AAyinY$) di chiusi allora $f^(-1)(y)$ è chiuso, ma allora usando che ...
Si consideri il seguente sottoinsieme di $RR^2$:
$X={(x,sin(1/x)}inRR^2|x in(0,+infty)}uu{0}xx[-1,1]$
Sia $alpha: [0, 1]->X$ una funzione continua tale che $alpha(0)=(0, 0)$. Si considerino le due proiezioni $pr_1:RR^2->RR$ e $pr_2:RR^2->RR$ e si ponga $alpha_i= pr_i\circalpha: [0, 1]->RR$ per $i = 1,2$. Si ponga $E = alpha_1^-1(0)$. Si ha che $E$ è non vuoto ed è chiuso in $[0,1]$. Si dimostri che per ogni $t_0inE$, esiste $epsilon>0$ tale che $(t_0 − epsilon, t_0 + epsilon)nn[0, 1]subeE$.
Allora la ...
Sia $WsubeRR^n$ un sottospazio affine di dimensione $k$. Si dimostri che $W$ è omeomorfo a $RR^k$. Si dimostri che $RR^n\\W$ è omeomorfo a $S^(n−1−k)xxRR^(k+1)$.
Con una traslazione (che è un omeomorfismo), possiamo supporre che $W$ passi per l’origine e con un automorfismo lineare (ancora un omeomorfismo) possiamo supporre che le $k$ coordinate di $W$ siano le ultime $k$ in ...

Ciao ragazzi, ho una domanda circa il calcolo della forza di attrito relativa ad un disco che rotola senza strisciare su di un piano con attrito volvente fv.
Quando scrivo il sistema della sommatoria delle forze e dei momenti, M*a (massa per accelerazione del disco), e
J * w' (momento del disco per accelerazione angolare del disco) le devo porre opposte al moto?
Se ho v e a (velocità e accelerazione) di verso tra loro opposto, M*a le prendo sempre in verso opposto alla velocità? Lo stesso vale ...
Sia $X$ uno spazio topologico T2 e sia ${A_i}_{iinNN}$ una famiglia numerabile di sottoinsiemi di
$X$, non vuoti, muniti della topologia di sottospazio e tali che $A_isupeA_{i+1}$ per ogni $iinNN$. Si ponga $A_{infty}=nn_{iinNN}A_i$.
(1) Se per ogni $iinNN$ $A_i$ è compatto e connesso, allora si provi che $A_{infty}$ è non vuoto, compatto e connesso.
(2) Se per ogni $iinNN$ $A_i$ è compatto e connesso per archi, ...
Salve, avrei bisogno di aiuto con un esercizio.
Si calcoli il volume del cilindroide a generatrici parallele all'asse z, delimitato dal piano $z = 0$ e dalla parte di superficie di equazione $z = log(xy)$ che si proietta in $T = {(x, y) : x^2 ≤ y ≤ 2, x ≥1/2}$.
Come mai c'è bisogno di dividere T in due pezzi? Quali sono le complicazioni a procedere con l'integrazione direttamente su T? Grazie in anticipo