Analisi matematica di base
Quando all'Università i problemi con la matematica tolgono il sonno, cerca aiuto qui
Domande e risposte
Ordina per
In evidenza
Salve a tutti ,
ho la seguente funzione :
$f(psi)= lambda/(sin^2psi )+sin^2psi $
ne voglio calcolare i massimi e i minimi nell' aperto $(0,pi)$ al variare del parametro $lambda>0$ .
$ f'(psi)=-lambda(cospsi)/sinpsi+cospsisinpsi=0rArr $
$ psi_1=pi/2 $ , $ psi_(2,3)=arcsinsqrtlambda,arcsinsqrtlambda+pi/2 $
$ f''(psi)=lambda/(sin^2psi)+cos^2psi-sin^2psi $
Ora io non capisco perché mi faccia questa distinzione ,
se $lambda>=1$ c' è solo un minimo in $pi/2$
non capisco perchè non consideri $ psi_(2,3)$ dato che in questi punti non si annulla la deriva ...
$\int frac{sqrt(1+7x)}{1+sqrt(1+7x)}$
Salve ragazzi, ho letto il regolamento e non mi è parso di leggere di doversi presentare da qualche parte, di conseguenza non l'ho fatto ma siccome sono un po' di fretta al momento potrei essere in errore.
Vi scrivo perché avrei bisogno di un aiuto per la determinazione di una funzione inversa. La funzione è questa:
$f(x) = log_(1/3)(sqrt(x^(2)-4))-log_(1/3)(x+1)$
Ora dal grafico qualitativo che ho realizzato la funzione mi risulta strettamente decrescente nel dominio $\text(D): [2,+infty)$ quindi invertibile.
L'esercizio mi ...
Salve a tutti
Nel corso delle mie esercitazioni mi sono imbattuto in equazioni differenziali non omogenee di cui non conosco un metodo per la loro risoluzione:
$y''-y=1/(1+e^x)$ (in un problema di Cauchy con condizioni iniziali $ y(0)=0;y'(0)=0$)
e soprattutto
$y''+y=tanx$ (in un PdC con condizioni $y(0)=0; y'(0)=1$)
Qualcuno puo aiutarmi per entrambe?
Grazie in anticipo.
Buongiorno a tutti,
Mi è venuto un dubbio sul metodo di calcolo degli sviluppi di Taylor in più variabili. Data \(f: \mathbb{R}^n \to \mathbb{R}\) lo sviluppo di Taylor nel punto \(\mathbf{x}_0 \in \mathbb{R}^n\) è:
\[f(\mathbf{x}) = \sum_{k=0}^\infty \frac{1}{k!} \mathrm{d}^k f_{\mathbf{x}_0}(\mathbf{x} - \mathbf{x}_0) = f(\mathbf{x}_0) + \mathrm{d}f_{\mathbf{x}_0}(\mathbf{x} - \mathbf{x}_0) + \frac{1}{2}\mathrm{d}^2f_{\mathbf{x}_0}(\mathbf{x} - \mathbf{x}_0) + \dots\]
Ovvero:
\[f(\mathbf{x}) ...
Ve la riporto $ fn(x)= (1-e^(x/2))/(sen^2x+ n^2 $
con $ x sub (-oo,0] $
Allora converge puntualmente, infatti il limite puntuale fa zero. Ma nella convergenza uniforme non riesco ad annullare la derivata prima per trovare il massimo:
$ (-1/2e^(x/2)(sen^2x+n^2)-(1-e^(x/2))2senxcosx)/(sen^2x+n^2)^2 $
oppure devo solo sostituire x=0 per ottenere il massimo? Vi prego ho un esame domani pomeriggio
ciao ragazzi, mi date una mano col seguente integrale?
$int_2^3 x/(x^2+x-2) dx$
sono arrivato al punto:
svolgendo i calcoli arrivo a:
$int_2^3 (x+1-1)/(x^2+x-2)dx =<br />
1/2int_2^3 (2x+2)/(x^2+x-2)dx -int_2^3 1/(x^2+x-2)dx=$
$1/2int_2^3 (2x+1)/(x^2+x-2) +1/(x^2+x-2)dx -int_2^3 1/(x^2+x-2)dx=$
$1/2int_2^3 (2x+1)/(x^2+x-2) dx +1/2int_2^3 1/(x^2+x-2)dx -int_2^3 1/(x^2+x-2)dx$
ora, il primo integrale è della forma $int (f'(x))/f(x) dx$ mentre gli altri due non so come trattarli.
mi date una mano?
grazie
Devo calcolare l'integrale doppio:
$int xy dx dy$
In D, regione piana delimitata dalla retta di equazione $y=x-1$ e dalla parabola di equazione $y^2 = 2x + 6$.
Per ottenere gli estremi d'integrazione in dx e in xy, posso mettere a sistema le due equazioni e calcolare i valori si x e y ?
Grazie.
Ciao a tutti, di nuovo ho un problema con un esercizio sul metodo delle caratteristiche.
Trovare $u=u(vec x,t)$,$vec x inRR^n,t>0$ che soddisfa
$(delu(vec x,t))/(delt)+c\gradu(vec x,t) +du(vec x,t)=0$
$u(vec x,0)=u_0(vec x):$
dove $cinRR^n,dinRR$
In questo caso posso procedere in maniera tradizionale e scrivere
$(du(X(t),t))/dt=(delu(X(t),t))/(delt)+X'(t)\gradu(X(t),t)$
da cui
$(du(X(t),t))/dt+du(X(t),t)=0$
dunque risolvere questa ODE e poi tutto il resto del metodo?
Oppure ho scritto delle enormi cavolate e si procede in maniera del tutto diversa?
Ragazzi ho dei problemi nella risoluzione di questo esercizio:
''Studiare la seguente forma differenziale e calcolare l'integrale curvilineo di $omega$ esteso alla curva $alpha(t) = (t, cost)$ con $t in [0, pi/2]$ orientata nel verso delle t crescenti:
$omega = (x/(x^2+y^2) + senx) dx + (y/(x^2+y^2) + e^y) dy$
Ora, ho studiato la forma differenziale ed ottenuto la funzione:
$f(x, y) = 1/2 log(x^2+y^2) -cosx + C.$
Ora devo calcolarne l'integrale curvilineo, e mi esce una roba del genere che trovo assolutamente ...
Buonasera a tutti!
Esame di analisi due, come si risolve questo esercizio?
Si consideri l'insieme $Q=$ $ { (x,y) in R : |x| + |y|< 4 } $ e la funzione $ f (x,y) = x^2 + ( y - 1 )^2 $ . Quali delle seguenti affermazioni riguardanti l'immagine $ f( Q ) $ è vera?
$ 4 in f( Q ) $
$ 26 in f( Q ) $
$ 30 in f( Q ) $
sup $ f( Q ) $ = $ oo $
Ho provato a usare le linee di livello, ma non mi riesce. Forse sbaglio qualcosa, un aiuto?
scrivere il polinomio di Mclaurin di ordine 2n+2
senx= $ (-1)^n/((2n+1)!) x^(2n+1) $ è la furmula generale per lo sviluppo di taylor
senx= x- $ x^(3)/(3!)+x^(5)/(5!)... $
se la devo fare di ordine 2n+2
agisce su quella generale o semplicemente sul grado dello sviluppo del senx
cioè verrebbe
$ x^(4)-x^(8)/(3!)+x^(12)/(5!)... $
Salve a tutti, ho da poco iniziato lo studio delle distribuzioni temperate. Sto cercando un esempio che provi l'inclusione "stretta" dello spazio delle distribuzioni temperate all'interno dello spazio delle distribuzioni. Per ora ho trovato solo questo:
che è un esempio preso da qui:
http://books.google.it/books?id=ZoxEBAAAQBAJ&pg=PA59&lpg=PA59&dq=distribuzioni+temperate+inclusione&source=bl&ots=z_I21DWKBV&sig=rdzdwfRjJpcFInjxZtW36sdxSYw&hl=it&sa=X&ei=6U4XVP3lDcvXyQORyIGACQ&ved=0CDwQ6AEwAw#v=onepage&q&f=true.
Nell'esempio proposto non riesco a dimostrare che l'integrale, che a quanto ho capito non è di Lebesgue, diverge. Forse occorre utilizzare una disuguaglianza ? Comunque sia, se qualcuno ...
Salve a tutti ho questi due problemi da svolgere con i massimi e minimi che non riesco a risolvere.
Studia per quali valori di A f(t) è positiva
1) $ A/(2t^2)+1/2t^2+A $
2) $ A/(3t^3)+1/5t^5 $
Nel primo problema ottengo come minimo $ -root(4)A $ e $ root(4)A $ e da qui non riesco più a risolvere l'equazione; nella seconda invece quando tento di sostituire il minimo nell'equazione originaria A mi viene uguale a zero. Qualcuno può darmi una mano per farmi capire l'errore? Grazie
Sapendo che il volume di un ellissoide si calcola $V=4/3*pi*abc$, determinare l'ellissoide $E_((x,y,z))={(a,b,c) in RR^3: x^2/a^2+y^2/b^2+z^2/c^2<=1}$ di volume massimo tra tutti quelli che verificano $a+2b+3c=18$.
Ho applicato il metodo dei moltiplicatori di Lagrange, dove $f(a,b,c)=4/3piabc$ e $M={(a,b,c) in RR^3: a+2b+3c-18}$
Quindi una volta risolto il sistema: $\{(4/3pibc-\lambda=0),(4/3piac-2\lambda=0),(4/3piab-3\lambda=0), (a+2b+3c-18=0):}$ trovo che il punto di massimo è $(6,3,2)$ e quindi l'ellissoide di massimo volume è $x^2/36+y^2/9+z^2/4$
Il mio problema è: quali sono le ipotesi per ...
Sia $\varphi in C^1(RR)$ tale che $text{sup}_(x in RR) |\varphi'(x)|<1$
Provare che il sistema
$\{(x'=y-\varphi(x)),(y'=x-\varphi(y)):}$
ha un unico punto di equilibrio e che tale equilibrio è sempre insabile.
Allora il punto di equilibrio è $(\varphi(x), \varphi(y))$
Adesso per vedere che è sempre instabile dovrei trovare la matrice A del sistema cosi posso calcolarmi gli autovalori. Ma qual è in questo caso?
Calcolare
$ int int_\omega xy dx dy , \omega={(x,y)\in R^2 : 0\leqy\leqx ,1\leq x^2 + y^2 \leq 4 } $
Qualcuno mi può spiegare come si trovano gli intervalli che mi permette di trovare gli integrali?
Io ho pensato che rispetto a y gli intervalli sono 0,2 e verso x sono y,2.. non so se sono esatti il risultato deve essere $15/16$
Salve, ho degli esercizi svolti sui numeri complessi, ma per alcuni di essi non riesco ad afferrare il ragionamento che c'è dietro. Ve ne posto uno per abusare della vostra disponibilità
Risolvere e rappresentare sul piano di Gauss le soluzioni dei seguenti sistemi:
$ \{ (Re [\bar{z}(z + i)] <= 2), (Im z >= 0) :} $
SVOLGIMENTO
Posto $z = x + iy$ , iniziamo a trasformare la prima equazione del sistema:
$ \bar(z + i) = (x − iy)(x + iy + i) = x^2 + y^2 + y + ix $
Pertanto il sistema risulta:
$ \{ (x^2 + y^2 + y <= 2), (y >= 0) :} $
Nel piano di Gauss i punti che soddisfano al ...
Ragazzi oggi vi mostro un esercizio sul calcolo delle primitive di un campo, secondo il procedimento che ci ha dato il prof per svolgerle, l'esercizio mi ridà un certo valore, mentre dai risultati la primitiva non esiste, quindi non capisco se ho sbagliato io oppure ho svolto correttamente l'esercizio.
Determinare tutte le primitive del campo $ lg(xy) + 1;<br />
x/y $
nel primo quadrante.
Svolgo l'esercizio, integrando A1 rispetto ad x:
$ intA1dx= xln(xy)+ h(y) $
Derivo rispetto ...
y'= (-5/x)y +x
y(-1)=3
questo problema di cauchy non mi torna.
se trovo la soluzione con la formula generale delle equazione differenziale di primo ordine non serve trovare poi la soluzione di quella non omogenea.
se trovo la soluzione con ad esempio il metodo delle variabili separabili come faccio poi a determinare la soluzione particolare?
giusto questo ragionamento????