Analisi matematica di base

Quando all'Università i problemi con la matematica tolgono il sonno, cerca aiuto qui

Domande e risposte

Ordina per

In evidenza
In evidenza
Più recenti
Più popolari
Con risposta
Con miglior risposta
Senza risposta
GuidoFretti1
Buongiorno, sto studiando da dalle dispense del mio docente e non riesco a capire questo esempio sugli insieme $G_delta$ densi. Riporto il testo: Siano $X,Y$ spazi metrici,sia $f:X->Y$ e si supponga che esiste un insieme $A$ di prima categoria in $X$ tale che $f$ è continua su $A^c$. Allora è chiaro che se $X$ è completo $f$ è continua su un insieme $G_delta$ denso in ...
4
2 ago 2022, 20:00

thedarkhero
Sia $f:RR^n->RR$ una funzione qualsiasi. Si dice che $f$ è lipschitziana se esiste una costante $L \ge 0$ tale che $||f(x)-f(y)|| \le L ||x-y||$ $AA x,y \in RR^n$. Ma rispetto a quale norma? Posso scegliere indifferentemente ad esempio la norma 1 o la norma 2 (euclidea) o la norma $oo$ perchè tanto, essendo queste norme equivalenti, se $f$ è lipschitziana rispetto ad una norma allora è lipschitziana anche rispetto alle altre?
5
2 ago 2022, 15:40

MMarco1
Buongiorno, stavo riflettendo sui criteri di convergenza delle serie a termini definitivamente non negativi ed in particolare sul criterio del rapporto/radice. Se ragiono correttamente, questi criteri esprimono una condizioni solo sufficiente per la convergenza/ divergenza di una serie. Giusto per curiosità, volevo allora ''inventare'' una serie che fosse ad esempio convergente pur in presenza di valore del limite del criterio del rapporto/radice maggiore di 1 oppure viceversa divergente con ...
2
2 ago 2022, 08:14

7C2
Salve a tutti, non riesco a dimostrare il seguente: Sia \(\displaystyle f \) una funzione continua in un intorno \(\displaystyle I \) di $x_0$, e derivabile in \(\displaystyle I \) tranne al più in $x_0$ . Se $x_0$ è un punto di massimo relativo per \(\displaystyle f \) allora esiste un intorno sinistro di $x_0$ in cui $f'>=0$ e un intorno destro di $x_0$ in cui $f'<=0$ . In pratica a me interessa la dimostrazione ...
9
7C2
31 lug 2022, 10:44

Manox
Salve a tutti, ho un dubbio sulle derivate direzionali: non ho capito quando una derivata direzionale é definita, la mia professoressa per verificare ciò utilizza la formula del gradiente. Qualcuno sa spiegarmi perché? Grazie a tutti dell'aiuto.
2
29 lug 2022, 21:20

silviaaivlis
Ciao, ho questo esercizio da risolvere: Trovare la soluzione del seguente problema di Cauchy, specificando se possibile l’intervallo massimale di definizione $ { ( u'(t)=t*u(t)^3 ),( u(0)=0 ):} $ E' un'equazione differenziale a variabili separabili e soddisfa le ipotesi del teorema di Cauchy Lipschitz in quanto abbiamo una funzione di classe $ C^1 $ che quindi è localmente lipschitziana rispetto alla seconda variabile, quindi localmente la soluzione è unica. Se parto cercando le soluzioni banali, ...
2
5 giu 2022, 11:27

GuidoFretti1
Avevo già aperto un post identico qualche mese fa, ed avevo ricevuto una risposta che mi pareva sensata. Tuttavia oggi mi è stato comunicato che la dimostrazione cosi fatta non ha alcun senso ed è completamente errata. Ripropongo il post, con i miei tentativi di arrivare alla tesi. Siano $X,Y$ spazi metrici e siano $f_n:X→Y$ una successione di funzioni continue che convergono puntualmente tale che $∀x$ esiste $lim_n f_n(x)$ in $Y$ e definisce ...
3
26 lug 2022, 22:23

GuidoFretti1
Siano X,Y spazi metrici e siano $fn:X→Y$ una successione di funzioni continue che convergono puntualmente : $∀x$ esiste $lim_n fn(x)$ in $Y$ e definisce $f:X→Y$. sia $Fn,m:={x∣dY(fn(x),fk(x))≤1/m,∀k≥n}$, dimostrare che $X=uuu_{n >0} F_(n,m)$ Ho provato a procedere così, ma poi mi blocco e non riesco più ad andare avanti. sia $x in X$ allora per ipotesi $fn(x) -> f(x)$ e dunque $fn(x)$ è di Cauchy in $Y$ e per ogni ...
28
25 lug 2022, 13:43

GuidoFretti1
sia $X:={f in C[0,1] t.c f(0)=0}$; dimostrare che se $f in X$ e $||f||_(infty)=1$, allora $|\int_0^1f| <1$ non sono sicuro della mia dimostrazione, potreste darmi una mano? con le ipotesi date sicuramente $|\int_0^1f| <=1$; inoltre $|\int_0^1f| =1$ se e solo $f(x)=+-1$ q.o. essendo l'intervallo $[0,1]$ di lunghezza $1$. Ma allora $f=+-1$ non può appartenere ad $X$ e dunque $|\int_0^1f| <1$. grazie
18
25 lug 2022, 09:37

thedarkhero
La composizione di due funzioni globalmente lipschitziane è una funzione globalmente lipschitziana con costante di Lipschitz pari al prodotto delle costanti di Lipschitz delle due funzioni. Ma il prodotto di due funzioni localmente lipschitziane è ancora una funzione localmente lipschitziana?
1
24 lug 2022, 16:57

olanda2000
$ y=arctan(x) + arctan(1/x) $ Intendo nel suo dominio di definizione , cioè R\0 Fa un salto comunque ! Grazie
5
22 lug 2022, 19:42

fabri23f
Buonasera, ho problema, dovrei derivare rispetto alla direzione del moto principale l'equazione dell'energia specifica E= h+ V^2/(2g) = h + Q^2/(2gA^2), equazione dell'energia riguardante il moto permanente a superficie libera dell'acqua. Il libro mi dice che è uguale a: d/dx ( h + Q^2/(2gA^2) = dh/dx - Q^2/(gA^3) dA/dx Si deriva l'area A lungo la x perchè l'energia varia con l'area lungo la progressiva, inoltre la Portata Q = cost. La domanda matematica è: perchè la derivata della A viene ...
5
21 lug 2022, 23:05

neperoz
Buonasera, ho provato a svolgere il seguente esercizio sostituendo $z = x +iy$ ma non penso di star seguendo il procedimento corretto. Inoltre non saprei come interpretare il risultato. Determinare il luogo geometrico degli $z in CC$ $Re (i(z^2 + (Imz)^2)-z)/(e^(i3/2pi)(zoverline{z}-7e^(4pii))) = 0$ La risposta dovrebbe essere "Una parabola privata di due punti" Riporto anche il mio tentativo. Numeratore: $i(x^2+y^2+2xyi+y^2)-x-iy = x^2i+2y^2i-2xy-x-iy$ Denominatore: $e^i3/2 = -i$ $z*overline{z} = |z|^2 = x^2+y^2$ $7*e^(4pii) = 7*(1) = 7$ => Poi ho riscritto ed ...
4
20 lug 2022, 23:13

Antonio Gorgoglione
Buongiorno. A partire da questa Lagrangiana: $L=1/2msqrt(dotx^2+doty^2+dotz^2)-[1/2k(r-l_0)^2+mgz]$ quali sono i passaggi per ottenere queste 3 equazioni? $ddotx=-omega_z^2{r-l_0}/rx$, $ddoty=-omega_z^2{r-l_0}/ry$, $ddotz=-omega_z^2{r-l_0}/rz-g$, con $omega_z^2=k/m$. Grazie in anticipo.
1
22 lug 2022, 11:36

Bianco17
Salve a tutti! Ho trovato una dimostrazione simpatica della caratterizzazione degli insiemi misurabili secondo Peano-Jordan mediante la trascurabilità secondo Lebesgue della frontiera. In questa, si fa riferimento al seguente fatto: Un sottoinsieme di un insieme in $\RR^n$ di misura nulla secondo Peano-Jordan è ancora misurabile con misura nulla. Questo mi ha destato qualche perplessità perché ricordavo che, durante le lezioni, la prof ha insistito molto ...
2
21 lug 2022, 11:50

neperoz
Buongiorno. Mi ritrovo in difficoltà con questo esercizio, ho provato a svolgerlo semplificando i due esponenziali: il primo mi risulta $i$, il secondo $-1$ ed il terzo pure. Da qui sostituirei $z = x + iy$ ove possibile, idem con $Re(z)$ e $Im(z)$ ma non saprei come fare per $z^2*overline{z}$. Proverei a sostituire e sviluppare tutti i calcoli ma risulterebbero termini alla terza e moltiplicati per $i$ che non so ...
3
20 lug 2022, 14:41

fireball-votailprof
Salve a tutti, scusate la mia domanda ma è da un bel po' che non studiavo e quindi sono un po' arrugginito. La fase di un numero negativo quanto vale?
12
5 mag 2010, 20:39

Dr.Hermann
Salve a tutti. Ho questo esercizio da risolvere (tratto da un testo d'esame) ma non so come impostarlo. Non voglio i calcoli ma se possibile solo delle linee guida. L'esercizio è cosi definito: Studiare la funzione $z=f(x,y)$ implicitamente definita dall'equazione $F(x,y,z)= xsinx+ln(1+y^2)-z-int_{0}^{z}e^(t^2)dt=0$, riportandone inoltre lo sviluppo in serie di McLaurin al secondo ordine con resto di Peano. Potete aiutarmi?? Grazie
7
11 lug 2022, 10:01

AHDHSHXJSHXBSBXHSJCJECJSJX
"Sia \(\displaystyle f:\mathbb{R} \rightarrow \mathbb{R} \text{ funzione continua tale che} \\ 4f^2(x)-4f(x)+1>0 && per ogni x reale \\ \dimostrare che se f(x_0)=0 per qualche x_0 reale, allora f è limitata superiormente \) \(\displaystyle \text{Ho iniziato riscrivendo l'ipotesi in questo modo: }(2|f(x)|-1)^2 >0 \text{ , questo però implica che } \\ f(x) \neq \pm \frac{1}{2} \text{ ora, i limiti di f a} \pm \text{infinito} \text{ non possono essere infiniti perché altrimenti f, per il ...
3
19 lug 2022, 06:28

StudenteSerio1
Salve a tutti. Mi trovo per la prima volta a dover tracciare il grafico qualitativo di una funzione di cui non conosco l'equazione ma di cui ho delle informazioni. Ho seguito un procedimento e volevo condividerlo con voi per avere dei consigli o delle eventuali correzioni. Grazie. La traccia dell'esercizio è la seguente: Traccia il grafico qualitativo della funzione [tex]f(x)[/tex], definita e derivabile per [tex]x>-1[/tex], passante per l'origine, con [tex]\lim_{x \to -1} f(x) = ...
2
19 lug 2022, 17:13