Analisi matematica di base
Quando all'Università i problemi con la matematica tolgono il sonno, cerca aiuto qui
Domande e risposte
Ordina per
In evidenza
Ciao!
ho questa dimostrazione da fare per l'esame di sistemi dinamici
siano $F:A->RR^n$ un campo vettoriale $C^1$(nell'interno di $A$), $x_0$ un punto singolare(punto di equilibrio per il sistema) per $F$ e $V:Omega->RR$ una funzione di Ljapunov per $x_0$ allora $x_0$ è un equilibrio stabile.
precisazioni
con funzione di Ljapunov per $x_0$ intendo le seguenti cose
1) $x_0$ è ...
$ lim_x -> 0(cos^3sqrt(x)-root(3)(cos(x))) /x^(2/3) $
l'unico modo per risolvere questo limite sono utilizzare gli sviluppi di taylor?
$ cos(x)=x-x^2/2+x^4/24 $
come sviluppo $cos^3sqrt(x)=1-3/2x+7/8x^2-61/240x^3+....$
non so come calcolare lo sviluppo di taylor
devo fare prima il quadrato di trinomio e poi sostituire la radice di x al posto della x?
mi aiutate nei calcoli non riesco a venirne a capo.
Grazie!
Buongiorno a tutti,
dato che è il mio primo post colgo l'occasione per ringraziarvi di tutto quello che fate qui: vi seguo da quando ho iniziato ingegneria e grazie anche ai vostri consigli ho superato geometria ed algebra lineare. Vengo al dunque: sto preparando analisi 2 e mi sono imbattuto in questo esercizio in un tema d'esame:
Sia data l'eq. differenziale con problema di Cauchy:
\( \begin{cases} y'= |\sqrt[3]{y}|+x \\ y(x_{0} )=a \end{cases} \)
1- in base a teoremi conosciuti, ...
dimostrare che la funzione $f(x)=e^x$ è lipschitziana in $[-1,1]$. Lo è anche in $]-oo, +oo[$?
l ho svolto così
$f'(x)=e^x$
$lim_(x->-1) f'(x)= 1/e$
$lim_(x->+1) f'(x)= e$
poichè $f'(x)$ è limitata in $[-1,1] => f(x)$ è lipschitziana in $[-1,1]$
invece per quanto riguarda l'intervallo $]-oo, +oo[$ ho dei dubbi:
$lim_(x->-oo) f'(x)= 0$
$lim_(x->+oo) f'(x)= +oo$
basta dire che poichè le derivate non sono limitate f(x) non è lipschitziana in ...
Ciao a tutti,
Non riesco a dimostrare in modo rigoroso che il valore del seguente integrale è nullo per qualsiasi numero naturale $N!=1$
$1/T int_0^T [sin(omegat)*sin(Nomegat+theta_N)]dt = 0 , AA(NinNN)!=1$
Dove $theta_N$ è un numero reale qualsiasi (che in questo caso rappresenta lo sfasamento dell' N-esima armonica rispetto alla fondamentale in un passaggio per il calcolo della potenza assorbita dalla rete da un alimentatore).
Dovrei provare a integrare per parti?
Buongiorno,
sto leggendo l'argomento inerente alla serie armoniche. Sulle dispense del mio professore, viene citata la seguesente osservazione, la quale non mi risulta chiara, ossia:
Osservazione
Per le serie armoniche divergenti ha interesse studiare l'ordine di infinito della successione delle somme parziali.
Qualcuno che mi potrebbe dare qualche dritta
P.s. se potrebbe tornare utile, allego la dispensa, pag. 135, ultime due righe
https://www.docenti.unina.it/webdocenti-be/allegati/materiale-didattico/34075453
Ciao.
Ciao a tutti. Sugli appelli del mio corso di analisi matematica, nelle soluzioni agli esercizi di studio della derivabilità, trovo scritto testualmente:
Per vedere se f è derivabile in .... possiamo usare il teorema che ci dice che, se esiste il limite per $ x->x^0 $(da destra e da sinistra) di $ f'(x) $ , allora esiste anche il limite del rapporto incrementale di f(x) e quest'ultimo è uguale al precedente.
il mio dubbio nasce dal fatto che io so che il modo corretto di ...
Salve, ho un dubbio sul criterio di monotonia, non sulla dimostrazione o sulla comprensione, ma sull'applicazione pratica del teorema.
Il criterio dice che se f è una funzione continua in [a,b] e derivabile in (a,b) allora: $f'(x) >= 0, \forall x \in (a,b) \Leftrightarrow \text{f e' crescente in [a,b]}$.
Nel mio libro di analisi uno successivamente alla dimostrazione fa un esempio con la funzione $x^2$ e dice, poiché la sua derivata è $2x$ ed è positiva per $x > 0$, e negativa per $x < 0$, allora la funzione ...
lim (x->infinito)
radice(x) per log(1 + 1/n)
Potreste aiutarmi a svolgere questo limite di successione? Grazie
Salve, non riesco a capire dove ho sbagliato nel seguente esercizio :
Studiare il seguente problema di Cauchy \(\displaystyle \begin {cases} y'(t)=2sen( \frac {t} {5} ) \sqrt {25-y} \\ y(0)=0 \end {cases} \)
Ok io l'ho svolto così :
\(\displaystyle f(t,y)=2sen( \frac {t} {5} ) \sqrt {25-y}\)
\(\displaystyle f(t,y) \in C(R)\)
\(\displaystyle \Omega = \{y\in R : y \leq 25 \} \)
\(\displaystyle \frac {df} {dy} (t,y)=2sen( \frac {t} {5} )(- \frac {1} {2\sqrt {25-y}}) \)
\(\displaystyle \frac ...
Buona sera a tutti, ho un problema con il seguente esercizio:
Stabilire al variare di $\alpha \in R$, l'integrabilità di $f(x,y,z)= \frac{1}{sqrt{(x^2+y^2+z^2)^3}*(x^2+y^2+z^2-1)^alpha}$
in $D={||(x, y ,z)||>1, z<0}$. E calcolare poi l'integrale con $\alpha=1/2$.
Essendo l'insieme $D={\sqrt{x^2+y^2+z^2}>1, z<0}$, ho pensato di passare in coordinate sferiche, cosi che mi ritrovo
${r \in[1,\propto], \theta in [0,2\pi], \phi in [\pi/2,\pi]}, con |detJ|= r^2sin\phi$. Anzitutto non so se ho fatto giusto, ma poi mi trovo $\int frac{1}{r(r^2-1)^alpha$ che non so come risolvere. Se qualcuno mi può aiutare lo ringrazio molto
Salve, sui numeri complessi ho dei dubbi riguardo alle equazioni quando vi sono moduli.
So che $|z|=sqrt(a^2+b^2)$ e facendo così non ho problemi, ma vedo soluzioni che mi sembrano svolte in maniera diversa.
Ad esempio ho
$z^2-|z|=0$
La soluzione fa, primo ovvio passo
$z^2-|z|=0 => z^2=|z|$
ma poi non trovo il senso, mi sembra che svolga il modulo come fosse invece un valore assoluto.. ma non mi sembra che abbia questo significato nei complessi, e se si, in base a cosa? Non lo trovo ...
Ciao, mi è comparso per caso facendo un esercizio sui numeri complessi in forma trigonometrica che mi venisse un dubbio davvero "stupido".
Mettendo che ho
$ Z_k = cos((2kPi)/3) + i sen((2kPi)/3) $
Con $k=(1;2;3)$
Svolgendo a livello di calcolo, escono ovviamente risultati diversi per ogni radice complessa..
ma la cosa che mi son chiesta è come mai il $k$ sia in grado di cambiare il risultato dato che l'angolo è uguale a meno del periodo $2kPi$... e quindi a prescindere da k si ...
Sia \( f : E \subset \mathbb{R}^n \rightarrow \mathbb{R} \) e \( x_0 \in E^{\circ} \) (non so come fare il circ sopra la \( E \), ma sostanzialmente è l' interno ad \(E \) ). Se esiste \( \delta >0 \) tale che le derivate parziali \( \frac{ \partial f}{\partial x_i } (x) \) esistono per tutti gli \( x \in B(x_0,\delta) \) e sono continue in \( x_0 \) allora \( f \) è differenziabile in \( x_0 \).
Io mi domandavo una cosa supponiamo che abbiamo l'esistenza di un \( \delta \), se prendo un ...
3
Studente Anonimo
11 giu 2019, 01:53
Salve avrei un problema nel determinare la soluzione particolare di questa equazione :
\(\displaystyle y''+3y'+2y=tsen(t)+2e^{-t} \)
Ho risolto l'equazione associata \(\displaystyle r^2 + 3r+2=0 \) e le radici uscite sono \(\displaystyle -2 \) e \(\displaystyle -1 \)
Il problema viene quando devo scrivere la soluzione particolare. Per l'esponenziale so che \(\displaystyle y=2ke^{-t} \) mentre per \(\displaystyle tsen(t) \) dovrebbe essere \(\displaystyle y=cos(t) (at+b) + sen(t) (ct+d) \) ...
Vorrei solo che mi aiutaste con questo esercizio sui numeri complessi. Scusate se non posto un tentativo, ma non ho proprio idea di come impostarlo.
$ |z-2i|^4=1 $
Buongiorno a tutti,
so che questo argomento potrebbe sembrare non inerente la sezione di analisi, ma ho due ragioni per pubblicarlo qui e non nella sezione di fisica; la prima è che la mia è essenzialmente una domanda di matematica(di fisica-matematica?); la seconda è che ogni volta che ho provato a scrivere nella sezione di fisica ho sempre ricevuto risposte piuttosto approssimative o elusive rispetto alla domanda, e spero qui di ricevere risposta da qualcuno che abbia presente l'argomento e ...
Buonasera a tutti,
Vi scrivo perché mi trovo in seria difficoltà con un esercizio che richiede di calcolare il gradiente di una funzione in un punto.
La funzione è la seguente:
$f(x,y)= \int_{-1}^{xy^2} ye^(xt^2) dt$
Viene chiesto di calcolare il gradiente di $f$ nel punto $(0,1)$.
Presumo che qui vada usata la formula di Leibnitz:
$\frac{d}{dx}\int_{\alpha (x) }^{\beta (x)} f(t,x)dt = \frac{d\beta}{dx}f(\beta(x),x)-\frac{d\alpha}{dx}f(\alpha(x),x) + \int_{\alpha (x) }^{\beta (x)} \frac{\partial}{\partial x}f(t,x)dt$
Mi trovo nei guai perché:
1) tale formula è stata a malapena accennata solo qualche giorno prima dell'esame;
2) spesso ne è richiesto l'uso ...
Buongiorno,
Ho domanda da porre
Sto calcolando il volume generato da un profilo di base lungo un percorso elicoidale
Per il calcolo del volume, ho ipotizzato di calcolare l' area di base del profilo e di moltiplicarla per la lunghezza dell' elica, calcolata a sua volta tramite integrale
Ma come idea non mi convince più di tanto, in quanto i punti del profilo di base sono caratterizzati tutti da percorsi diversi. A causa di questo, ho ipotizzato di mediare tutti i percorsi rispetto a quello ...
Dato il campo di forze
$F(x,y)=((2x)/(x^2+y^2)+1/x^2;(2y)/(x^2+y^2)+1/y^2)$
nell'insieme $A={(x,y)inRR^2:x>0,y>0}$
1)verificare che è conservativo
2)determinare un potenziale
3)calcolare il lavoro compiuto da $F$ per spostare una particella puntiforme lungo l'arco di iperbole $y=1/x$ dal punto $(1,1)$ al punto $(10,1/10)$
allora io avevo pensato di trattare tutto come un forma differenziale ponendo
$w=(2x)/(x^2+y^2)+1/x^2dx +(2y)/(x^2+y^2)+1/y^2dy$
per il punto uno siccome sto nel primo quadrante che è un insieme connesso ...