Analisi matematica di base
Quando all'Università i problemi con la matematica tolgono il sonno, cerca aiuto qui
Domande e risposte
Ordina per
In evidenza
Salve a tutti, vi posto il seguente esercizio, con il quale ho qualche problema:
$f(s)=slog[(s+1)/(s+2)] $. Il risultato del mio libro è $F(t)= [ e^(-t)(1+t)-e^(-2t)-2te^(-2t)-2t^2 ]/(2t^2) $ mentre io non mi trovo ( anche se " per poco " ). Il mio svoglimento:
[tex]\mathscr{L}^{-1}slog\frac{(s+1)}{(s+2)}=\frac{d}{dt} \mathscr{L}^{-1} {log\frac{(s+1)}{(s+2)}} + \mathscr{L}^{-1} {log\frac{(s+1)}{(s+2)}} (0^+) \delta(t)[/tex].
[tex]\frac{d}{dt} \mathscr{L}^{-1} {log\frac{(s+1)}{(s+2)}}=\frac{d}{dt} \mathscr{L}^{-1}[/tex] ...
Salve a tutti ragazzi...vi propongo un altro esercizio:
Data $f(x)=\int_{0}^{x}\frac{e^\sqrt(t)}{2t+3}dx$ devo determinare:
- Dominio di $f$;
- Ratta tangente al grafico di $f$ nel punto di ascissa $0$.
Allora il dominio secondo me è $t>=0$ poichè ho studiato il dominio della funzione integranda; per trovare la tangente utilizzerei la formula $y-y_0=f'(0)(x-x_0)$ avendo che $x_0=0$ e $f'(x)=\frac{e^\sqrt(t)}{2t+3}$ giusto? sostituisco $0$ a $t$? ...
Buongiorno a tutti, chiedo un aiuto a tutti voi sulla determinazione dell'insieme di esistenza di funzioni logaritmiche ed esponenziali. So che magari l'argomento per alcuni è di estrema facilità, ma io davvero sto impazzendo!! L'esercizio che mi ha mandato in tilt è il seguente. Determinare il dominio della seguente funzione: 1/x ln (e^x-1)/x. Help Please!!!!!
Serie di taylor
Miglior risposta
Sono alle prime armi con l'argomento, e mi risulta particolarmente ostico ,
pongo le mie perplessità a riguardo, presa ad esempio la funzione sinx
conoscendo la sua derivata che è cosx e le sue successive derivate nel punto x=0 si può facilmente calcolare il suo polinomio di taylor, che é la serie x-x^3/3!+x^5/5!-x^7/7!+..., ora una volta stabilito che la serie é convergente
per ogni x, chi mi dice però che il polinomio ottenuto coincida effettivamente con la funzione sinx?
Scusate se ...
Ciao a tutti, avrei bisogno di un aiuto per risolvere questo esercizio:
Sia \(X\) uno spazio normato (\(X\neq\{0\}\)) e \(X^{*}\) il suo duale algebrico:
i) dimostrare che \(X^{*}\) è chiuso in \(\mathbb{R}^{X}\) per la topologia prodotto;
ii) dimostrare che \(\mathbb{R}^{X}\) non è primo numerabile.
Il primo punto penso si dimostri sfruttando il fatto che nella topologia prodotto una successione di funzioni in \(\mathbb{R}^{X}\) converge se converge puntualmente, ma questa deduzione non mi ...
[tex]-\frac{1}{z-1} + \frac{1}{(z-1)^2} + \sum_{n=0}^{\infty} \frac{1}{2^n} (z-1)^n[/tex]
devo vedere in quale regione del piano converge questa serie bilatera.
allora io ho ragionato così mi riconduco alla serie di laurent e so che ha centro [tex]z_0 = 1[/tex] e che si dice convergente se la parte singolare e la parte regolare convergono:
parte singolare: [tex]-\frac{1}{z-1} + \frac{1}{(z-1)^2}[/tex]
parte regolare: [tex]\sum_{n=0}^{\infty} \frac{1}{2^n} (z-1)^n[/tex]
dovrei sapere il raggio ...
Salve a tutti, sto preparando l'esame di analisi 1 e non riesco proprio a capire i passaggi della dimostrazione del caso 1 elevato infinito presente sul mio libro di testo. Qualcuno potrebbe darmi una mano ?
Teorema:
Sia $f:A->RR^m$ una funzione differenziabile nell'aperto $AsubRR^n$, e siano $x,y\inA$ punti tali che $[x,y]:={tx+(1-t)y\inRR^n:t\in[0,1]}subA$.
Allora per ogni $v\inRR^m$ esiste un punto $z\in[x,y]$ tale che $<f(x)-f(y),v> = <df(z)(x-y),v>$.
(Indico con $<*,*>$ il prodotto scalare).
Dimostrazione:
Sia $gamma:[0,1]->A$, $gamma(t)=tx+(1-t)y$ una parametrizzazione del segmento $[x,y]$.
Definiamo la funzione composta $phi=<f*gamma,v>$ ovvero $phi(t)=sum_{i=1}^m f_i(gamma(t))*v_i$.
Ho che ...
Buon giorno, foro
Lungo il mio tortuoso cammino verso l'esame di analisi 3 mi trovo di fronte questo esercizio: calcolare con i metodi dell'analisi complessa il seguente integrale
\[
\int_1^{+\infty} \frac{x^2 - 2}{x^2(x^3+1)} \ dx.
\]
Ora, l'unica vera tecnica che io abbia visto è la combinazione di lemma di Jordan e teorema dei residui, ma qui il dominio non è particolarmente bello.
Ho provato ad adattarne una variante cercando se ci fossero luoghi di zeri della funzione integranda da poter ...
ho questo esercizio:
studiare lo sviluppo in serie di taylor di punto iniziale x=0 : [tex]f(x)= \int_{0}^{1} e^{x{y}^1/3} dy[/tex]:
spiego il mio ragionamento:
innazitutto mi ricordo la serie di taylor per l'esponenziale:
[tex]e^x= \sum_{n=0}^{\infty} \frac{x^n}{n!}[/tex]
allora ho pensatomi riconduco l'integrale per sostituzione a questo e pongo [tex]z=xy^{1/3}[/tex] quindi [tex]dy=3 \frac{1}{xy^{-2/3}}dz[/tex]
poi:
[tex]\int_{0}^{x}( \sum_{n=0}^{\infty} z^n) 3 ...
ho la seguente funzione
\$x^2*\$ \$sqrt(1-x^2)\$
per x che tende a -1 mi dice(è un esempio svolto) che è asintotico a 2\$sqrt(1+x)\$
come fa a calcolare a cosa è asintotico? ho provato a fare taylor al primo termine ma non mi viene
modifica: la funzione è x^2 * rad(1-x^2) asintotico per x-> -1 a: 2*rad(1+x)
ps: cosa sbaglio scrivendo i codici ASCIIMathML??
Ciao a tutti, devo risolvere l'integrale $int e^y(y^2-x^2)/(x^2+y^2)^2dx$; ho provato a risolverlo in questo modo:
$int e^y(y^2-x^2)/(x^2+y^2)^2dx= $ $e^yint (1-(x/y)^2)/[(x/y)^2+1]^2dx=$ quindi pongo $x/y=z$ e $dx/y=dz$, $dx=ydz$ ottenendo:
$ye^y int (1-z^2)/(z^2+1)^2dz =$ $ye^y int 1/(z^2+1)^2dz -ye^yint z^2/(z^2+1)^2dz$; però così facendo diventa troppo complicato, come devo fare?
Salve a tutti. Come calcolo gli asintoti di questa funzione ?
grazie anticipatamente
Ciao a tutti non riesco a capire in questa parte delle mie slide da dove salti fuori nel primo passaggio la $ f(x_j) $, qualcuno me lo potrebbe spiegare?
Salve a tutti non riesco a venire a capo di questo limite qualcuno potrebbe aiutarmi?
lim(x->infiniti): (-(e x)+e^(x/(-3+x)) (8+x))
il risultato dovrebbe essere 11e ma a me risulta sempre 8e non riesco proprio a capirlo
nn mi sono ben chiare queste condizioni e come faccio a verificarle.. allora io so che una funzione in campo complesso per essere olomorfa deve soddisfare le condizioni di cauchy - riemann:
[tex]\frac{d}{dx} f(x,y) = \frac{1}{i} \frac{d}{dy} f(x,y)[/tex]
ma io quando le applico nell'esercizio faccio le derivate e poi come faccio a stabilire se le condizioni sono rispettate????
da quanto ho capito è che dovrei vedere sia se parte reale che parte immaginaria esistono però nn penso sia la ...
salve ragazzi,
mi sto esercitando con gli integrali tripli, ma ho un problemino..
mentre con gli integrali doppi mi salta subito all'occhio se sono x o y semplici, con i tripli faccio un pò di fatica..
Come faccio a vedere rispetto a quale asse sono semplici e quale metodo usare per la risoluzione tra i fili e gli strati?
C'è un metodo preciso?
Ciao a tutti!! volevo chiedervi se nel risolvere un problema di cauchy del secondo ordine con radici complesse posso procedere sempre col metodo della wronskiana per trovare v(t)??
ad esempio questo:
y''(t) + y(t) = sin(t)cos(t)
y(0)=0
y'(0)=0
Grazie!!!
quello che mi chiedevo è se fosse possibilile usare il metodo grafico per le disequazioni con i numeri complessi, ma non sono arrivato ad una conclusione.
$|z|<Re(z+5)$ ecco la mia disequazione.
$sqrt(x^2+y^2)<x+5$
Ho pensato di disegnare la retta $y=x+5$ e di vedere quando questa sta sopra al grafico di $y=|z|=sqrt(x^2+y^2)$
come potrei fare altrimenti?
Ciao a tutti. Non mi è molto chiaro un passo di una dimostrazione in cui si vuole far vedere che il rango di un operatore è chiuso in uno spazio di Hilbert.
Sia $A:\quad H\rightarrow H$ un operatore lineare e limitato, dove $H$ è uno spazio di Hilbert con norma \(\|\quad \|\), e sia $R(A)$ il rango di $A$. Per dimostrare che il rango è chiuso in $H$ fa vedere che \(C\|u\|\leq\|Au\|\), dove $u\in H$ e $C$ è una costante ...