Forum
Domande e risposte su qualsiasi materia per scuole medie, superiori e università da parte della community di studenti.
Domande e risposte
Ordina per
In evidenza
$ arctan(x^2) $Ciao,
non riesco a capire come trovare lo sviluppo di Taylor (con $ x_0=0 $ ) della funzione $ 1/arctan(x^2) $
Ho già provato a calcolare quello di $ arctan(x^2) $ che mi esce $ x^2-x^6/3 $ ma facendo poi il tutto alla -1 diventa $ 3/(3x^2-x^6) $ e sono punto a capo.
Come posso fare?
Grazie
Elettrostatica (314212)
Miglior risposta
Posso affermare che la tensione sia una forma di energia?
Problema di matematica sulla retta
Miglior risposta
Mi potreste aiutare per questo esercizio sulla retta, per i compiti estivi.
Dati i punti A (-5;5) e B (2;0), scrivi l'equazione della retta r passante per P (0;3) e parallela alla retta AB e l'equazione della retta s passante per P e perpendicolare ad AB
soluzione: y= -5/7 x + 3 e y= 7/5 x + 3
Grazie in anticipo
Buonasera a tutti
Link per visionare il transitorio: https://www.canva.com/design/DAFnrrkI2E ... hsharelink
$iL(0^-)=-2.5A$ | $iL(0^+)=-2.5A | iL(+infty)=??$
$vL(0^-)=0 V | vL(0^+)=? | vL(+infty)=0 V$
e fino a qua ci sono...
ho dei dubbi sul calcolo di $iL(+infty)$ e di $vL(0^+)=?$
grazie a chi mi risponderà!!
Due sbarrette di lunghezza L hanno ciascuna una carica q distribuita uniformemente.sulla loro lunghezza. Esse sono sull'asse x e la distanza dei loro centri vale d. Calcolare la forza tra le due bacchette.
Potrei trovarmi il campo elettrostatico generato dalla prima sbarretta in un punto generico sull'asse a distanza x dall'origine che coincide con l'estremo della prima sbarretta. Moltiplicando quest'ultimo per la carica infinitesima della seconda sbarretta avrei la forza con cui ...
Buongiorno,
Sto avendo difficoltà con questo esercizio, non riesco proprio a capire il ragionamento per risolverlo. La soluzione è 40% ma. Qualcuno saprebbe spiegarmi il ragionamento? Sono un pochino arruginito.
Grazie
La traccia è la seguente:
In una libreria il 40% dei libri ha la copertina gialla. La libreria è divisa in due sezioni libri belli e libri brutti. Nella sezione libri belli il 60% dei libri è giallo, mentre nella sezione libri brutti il 10% dei libri è giallo. Qual è la ...
Se $VsubRR$ è l’insieme di Vitali, allora $Vxx{0}$ è $L^2$-misurabile e ha misura nulla.
Consideriamo il ricoprimento lebesguiano di $V$ dato da $[-n,n]xx{0}$, abbiamo che $L^2([-n,n]xx{0})=0$, per cui per abbiamo trovato un ricoprimento tale che$AAepsilon>0$ si ha $\sum_{n=0}^{+infty}mu^{star}([-n,n]xx{0})=0<epsilon$, per cui $L^2(Vxx{0})=0$. Va bene?
Un tubo di gomma per innaffiare il giardino spruzza acqua in direzione orizzontale con una forza di 30 N. Il getto d'acqua arriva al suolo con un'inclinazione di 45°. Calcola la pressione che l'acqua esercita su una porzione circolare di suono di diametro 24 mm.
Per il resto posso proseguire da sola ma potreste dirmi come si arrivare a svolgere il calcolo Fy = 30 * sin(45°)? Nonostante i miei tentativi non arrivo mai ad ottenere un valore di ipotenusa di 30 N
Ciao,
come si a trovare lo sviluppo di taylor di questa funzione con $ x -> ∞ $ ?
$ (4pi^2x^4)/(2pi^2x^2+1) $
Il primo termine l'ho calcolato perché il denominatore è asintotico allo stesso senza il +1, ma fermandomi qui nella funzione dell'esercizio (questa che vi ho postato è solo una parte), mi si "elimina" questo primo termine dello sviluppo ( $ 2x^2 $ ).
Da wolframalpha ho visto che il secondo termine sarebbe $ -1/pi^2 $ , ma non capisco come trovarlo.
Grazie
Buongiorno, volevo chiedervi se la seguente idea, risulta essere fattibile.
Sia $f: (a,b) to RR$ funzione monotona crescente, una tale funzione può avere al più punti di discontinuità di prima specie, escludendo gli estremi. Vorrei provare che la somma dei salti non può superare $f(b)-f(a)$.
Ora ho questo l'ho provato in maniera diretta, cioè facendo cosi, suppongo che $x_0< x_1$ siano punti di discontinuità, allora devo verifcare che $s(x_0)+s(x_1) le f(b)-f(a)$, dove ...
Se $f_n:A->[-infty,+infty]$ sono misurabili e vale $\sum_{n=1}^{+infty}\int_Aabs(f_n(x))d\mu$, allora $\int_A\sum_{n=1}^{+infty}f_n(x)d\mu=\sum_{n=1}^{+infty}\int_Af_n(x)d\mu$.
Io ho fatto così (se è sbagliato ditemi):
Se mostriamo che la successione di funzioni $s_k(x)=\sum_{n=1}^{k}f_n(x)$ verifica le ipotesi del teorema di convergenza dominata di Lebesgue allora vale che $\sum_{n=1}^{+infty}\int_Af_n(x)d\mu=lim_(k->+infty)\sum_{n=1}^{k}\int_Af_n(x)d\mu=lim_(k->+infty)\int_A\sum_{n=1}^{k}f_n(x)d\mu=\int_Alim_(k->+infty)\sum_{n=1}^{k}f_n(x)d\mu=\int_A\sum_{n=1}^{+infty}f_n(x)d\mu$.
Osserviamo che le $s_k(x)$ sono misurabili su $A$ poichè somma di funzioni misurabili su $A$.
Abbiamo che $abs(s_(k)(x))<=\sum_{n=1}^{k}abs(f_n(x))$, abbiamo che $\sum_{n=1}^{k}abs(f_n(x))$ è una ...
Sia $f:RR^(n+m):->[-infty,+infty]$ una funzione sommabile, definiamo $f_+=max{f,0}$ e $f_(-)=max{0,-f}$. Abbiamo che $f_+,f_->=0$ e sono misurabili (può andar bene dire che lo sono poichè sia $f$ che $abs(f)$ sono misurabili poiche $f$ è sommabile?), allora possiamo applicare il teorema di riduzione di tonelli su $f_+$ e $f_-$ e si ha $\int_{RR^(n+m)}f_+dxdy=\int_{RR^n}(\int_{RR^m}f_+dy)dx$ e $\int_{RR^(n+m)}f_(-)dxdy=\int_{RR^n}(\int_{RR^m}f_(-) dy)dx$ (con la notazione che $dL^n=dx$ e $dL^m=dy$). ...
Si ha che $f:[a, b]->RR^n$ è $BV[a,b]$ (ovvero a variazione limitata) se e solo se lo sono tutte le sue funzioni componenti.
Posto $f(x)=(f_1(x),...,f_n(x))$ ricordiamo le relazioni $max{||f_1(x)||_{RR^n},...,||f_n(x)||_{RR^n}}<=||f(x)||_{RR^n}<=||f_1(x)||_{RR^n}+...+||f_n(x)||_{RR^n}$ per ogni $x in[a,b]$.
Supponiamo che $f$ sia a variazione limitata, sia $\sigma={a=x_0<x_1,...,x_(p-1)<x_p=b}in\Omega[a,b]$ una scomposizione di $[a,b]$. Allora $AAiin{0,...,n}$ si ha $v(f_i,\sigma)=\sum_{k=1}^p||f_i(x_k)-f_i(x_(k-1))||_{RR^n}<=\sum_{k=1}^p||f(x_k)-f(x_(k-1))||_{RR^n}=v(f,\sigma)<+infty$ (poichè $f$ è a variazione limitata), ma allora $AA\sigmain\Omega[a,b]$ e ...
Salve,
vago cercando una risposta a una domanda sorta leggendo il mio testo.
Un sottospazio vettoriale W viene definito come spazio vettoriale di V se W è spazio vettoriale sul campo medesimo di V e con le medesime operazioni di V.
(in pratica devono valere le 8 proprietà sulle due operazioni definenti lo spazio vettoriale)
C'è poi un teorema di caratterizzazione che dice se W è sottoinsieme di V e valgono:
a) per ogni $v,w in W$ => $v+w in W$
b) per ogni $lambda in K$ e ...
Ho un disco di raggio $R$, massa $M$ che ruota con velocità angolare $\omega_0$ attorno a un asse orizzontale passante per il suo centro di massa. A un certo istante il disco viene lasciato cadere. Dopo avere percorso una distanza (verticale) $h$ viene agganciato da un piolo distante $R$ dal centro di massa e comincia a ruotare attorno a esso.
Devo calcolare la velocità angolare del disco dopo l'urto, l'impulso che il piolo ha ...
Ciao a tutti, ho un dubbio riguardo questo esercizio:
data la 1-forma differenziale $\omega = (-y^2)/((x-y)^2) \ dx + (2xy-y^2) / ( (x-y)^2) \ dy $
Dire se è vero che esiste un potenziale $U(x,y)$ definito su tutto $\RR^2 - {x \ne y} $, tale per cui $U(3,4)=U(4,3)$.
Anzitutto si ha che la forma è di classe $C^1$ ed è chiusa in $\RR^2 - {x \ne y}$. Tuttavia, essendo il dominio sconnesso (in particolare con 2 componenti semplicemente connesse), ad occhio mi verrebbe da dire che la forma non è esatta in tutto il dominio, in ...
ciao, ho un problema con questo esercizio (in realtà un pò con tutti quelli di geometria, specialmente se si parla di roba inscritta e circoscritta). gradirei un aiuto!
"Un triangolo isoscele, inscritto in una circonferenza di raggio $2a$, ha un lato lungo quanto il diametro. Quanto misura il suo perimetro?"
L'unico """ragionamento""" che so fare è questo
- il diametro è $4a$, ma non so se posso essere sicuro che sia effettivamente il lato obliquo (in quel caso mi ...
Se $E$ è un campo di spezzamento del polinomio $p(x)$ a coefficienti in $Q$ di grado $n$, le cui radici indichiamo con ${x_1,x_2,...,x_n}$, sia $alpha$ un elemento primitivo tale che $Q(alpha)=E$ il suo polinomio minimo avrà grado uguale ad $[E]$?
Inoltre un tale elemento sarà lasciato invariato dalle permutazioni del gruppo di galois di $p(x)$ ,vero?
Che forma dovrà avere?
Una densità volumetrica di carica $\rho> 0$ è distribuita uniformemente nella regione infinita inclusa tra i due piani $x = a$ e $x = −a$, paralleli al piano $yz$. Quanto vale il campo elettrico in ogni punto dello spazio?
C'è una evidente simmetria del campo elettrico nelle $y$ e nelle $x$ per cui possiamo limitarci a calcolare la componenti in $x$ del campo elettrico. Poi non sapevo precisamente come fare e ho ...
$ (x/2 - (x+1)/5) : (1/2 - 1)+(x/5-(x+1)/2):3/2=x/5-1/3+(5x-2)/3 $
ciao ragazzi potete aiutarmi? se per favore mi scrivete tutti i passaggi, grazie