Forum
Domande e risposte su qualsiasi materia per scuole medie, superiori e università da parte della community di studenti.
Domande e risposte
Ordina per
In evidenza

Appunti non stati convalidati andati persi cosa fare??? Li ho inviati il 19 giugno ma per problemi maturità non sono stati convalidati, fatto presente mi hanno risposto dicendomi che sono troppo impegnati per la maturità che appena possibile sarebbero convalidati ma non è stato così... adesso mi hanno risposto che non ci sono più appunti in coda e che sono stati tutti convalidati... tranne qst della foto. Ciao aspetto cortese risposta è soluzione al problema. Grazie Daniela

Ciao,
Non mi trovo con i risultati di questo esercizio:
Già il fatto che chieda la dissipazione dell'energia cinetica quando l'urto è elastico è strano, ma essendo la figura nella parte di teoria l'urto dell'esercizio potrebbe non essere elastico.
In questo caso però si avrebbe un aumento dell'energia cinetica e non una dissipazione.
Insomma prendendo tutti i dati dell'esercizio per buoni e applicando solo la conservazione della q.d.m. ...

Su una semiretta, a partire dalla sua origine $O$, riportare successivamente e nello stesso verso i segmenti: $OA$; $AB~=3OA$; $BC~=OA$; $CD~=2OA$; poi in senso contrario il segmento $DE$ multiplo secondo 5 del sottomultiplo di $OA$ secondo il numero 4. Rispetto a quale numero i segmenti $OB$, $OD$, $CE$, $AC$, $BD$, $OE$ sono ...

Salve a tutti,
Mi è sorto un dubbio analizzando la casistica dei moti che un corpo rigido può compiere.
In particolare, quando si parla di [highlight]rotazione[/highlight] (e basta!) di un corpo rigido si intende sempre e solo la rotazione attorno ad un asse [highlight]fisso[/highlight], vero? Io credo di sì Perché in effetti affermiamo che la caratteristica di traslazione (la velocità di un punto O di riferimento) è nulla. A me di fatti verrebbe da pensare che se l’asse non è fisso allora ...
Ho un'equazione goniometrica elementare ma non riesco a capire il mio errore
$sin(x-pi)+sin(4x)=0$
$sin(x-pi)=-sin(4x)$
$sin(x-pi)=sin(-4x)$
Procedendo così mi dà giusto solo un risultato
Procedendo diversamente mi danno tutti e due giusti i risultati:
$sin(x-pi)+sin(4x)=0$
$sin(4x)=-sin(x-pi)$
$sin(4x)=sin(pi-x)$
Come mai? Potreste aiutarmi per favore a capire, mi sta facendo impazzire!
Frase di latino (253964)
Miglior risposta
Romanorum legati ab hostibus in vinculis detinebantur et Caesar, indignatione motus, imperavit ut eorum urbs obsideretur.

salve!
sia $g : R^3->R^3$ l'unico endomorfismo tale che:
$<(1,1,0),(0,1,1)>$e’ un autospazio per $g$.
$(1,0,1)$ e’ un autovettore per $g$.
$g(2,2,2) = (2,−4,2)$.
determinare g
qualche idea?
thanks

Ciao a tutti, avrei bisogno di una mano per risolvere il seguente esercizio, sia:
Sia W {p(x) ∈ R3[x]|p(2) = 0} .
Utilizzando la definizione di sottospazio, si stabilisca se W `e
un sottospazio di R3[x] e in caso affermativo se ne determini la
dimensione.
Sapete spiegarmi il procedimento? Grazie in anticipo!

Buongiorno a tutti...
Non comprendo il perché della risposta al quesito:
data f(x) una funzione reale a variabili reali, derivabile due volte su R, con f(-20)=0, f(10)=0, f(25)=0, risulta vero che:
risposta corretta: esiste almeno uno 0 della derivata seconda di f.
Potreste aiutarmi a capire perché? Grazie in anticipo

Aiutatemi per favore,sono proprio in difficoltà
Miglior risposta
chi sarebbe così gentile da farmi il riassunto del libro dell'Iliade di Alessandro Baricco, per favore?
Buongiorno,
sto trovando davvero molte difficoltà nel risolvere la seguente equazione:
$ J(x,v,u)=sum_(i=1)^c sum_(j = 1)^gu_(ij)^w sum_(k=1)^n((v_(i(k+1))-v_(ik))/(t_(k+1)-t_k)-(x_(i(k+1))-x_(ik))/(t_(k+1)-t_k))^2 $
Quello che credo di dover fare è differenziare parzialmente rispetto a $ v_(ik) $ , porre uguale a zero, ossia trovare il minimo della funzione e poi ricavare l'espressione per $ v_(ik) $.
Lo scopo in ogni caso è trovare la funzione v che minimizza la funzione J.
sia x che v sono funzioni di t.
Quello che so è che l'espressione finale per $ v_(ik) $ dev'essere ...

Salve!
Ho difficoltà a “digerire” le conseguenze geometriche del moto di un corpo rigido.
In Particolare:
- l’asse istantaneo di moto è quell’asse tale per cui i suoi punti si muovono con velocità minima o al più nulla. Quindi si tratta dell’asse attorno a cui Il corpo ruota, vero? (Di fatti nella sua ricerca imponiamo proprio il parallelismo tra il vettore omega e questa retta da determinare...) Dunque le rigate sono semplicemente le superfici formate dall’insieme di quelli che sono stati o ...

Buongiorno a tutti,
Sto cercando di fare un excel in modo tale che nella cella prestabilita ci sia una funzione se che mi dia 3 risultati differenti a seconda dell'orario che mi rimanda la cella adiacente:
Risultato 1: Se nella cella adiacente l'orario è inferiore a 6 ore dare risultato "NO"
Risultato 2: Se nella cella adiacente l'orario è tra le 6 e le 12 ore dare risultato "TR"
Risultato 3: Se nella cella adiacente l'orario è superiore alle 12 ore dar risultato "T"
Io ho scritto la seguente ...
Il mio libro dice che per risolvere un'equazion goniometrica elementare del tipo: $sin(x)=-cos(x)$
vada riscritto come: $sin(x)=sin(pi/2+x)$
Ma io mi ono ricordato che $-cos(x)=sin(3/2pi+-x)$ e quindi ho pensato che si potesse risolvere così: $sin(x)=sin(3/2pi+-x)$
Il mio ragionamento è giusto oppure no? Poi mi sono chiesto: ma se il coseno è una funzione pari quel meno davanti non lo posso portare dentro?

Ciao a tutti, volevo chiedervi se potreste aiutarmi con un problema di studio di potenziale (che poi effettivamente si riduce a studio di funzione).
Un punto materiale di massa m=1 si muove sulla semiretta $ (0,+infty) $ sotto l'azione della forza
$ F(x)=-x^7+3/2 x^2-1/(8x^3) $
Si scriva il potenziale corrispondente, lo si disegni e si trovino i punti di equilibrio e se ne discuta la stabilità.
Se esistono punto di equilibrio stabile, si calcoli la corrispondente frequenza delle piccole ...
Dionysius Syracusanorum tyrannus, audacissimae fuit impietatis.
Disequazioni esponenziali 007
Miglior risposta
gentilmente mi potreste svolgere gli esercizi 404, 406,408. il 408 se volete potete anche non farlo, era per mia curiosità

Mi sembra che le seguenti considerazioni informali rendano "naturale" il teorema di Cayley (gruppi finiti).
Un gruppo finito $G={a_1,...,a_n}$ si può dire "completamente conosciuto" una volta che sono noti i risultati di tutte le possibili moltiplicazioni di fattori che si possono produrre con i suoi elementi. In virtù della proprietà associativa, a tale fine occorre e basta conoscere i risultati delle $n^2$ "moltiplicazioni di base" $a_ia_j$ in termini degli ...

Salve a tutti.
Il problema che vado ad esporvi è legato all'interpretazione della definizione di funzione semplice integrabile. Il mio testo di riferimento è Istituzioni di Analisi Superiore di Alberto Tesei. La procedura utilizzata dal testo è quella standard, prima si definiscono le funzioni semplici, in particolare quelle non negative, nel seguente modo:
\[
s(x)=\sum_{i=1}^{n} c_i\chi_{A_i}(x),
\]
dove $c_i\ge 0$ per $i=1,2,\ldots,n$ e $A_i=\{s=c_i\}$. ($s(X)=\{c_1,\ldots,c_n\}$)
Il testo ...