Matematicamente
Discussioni su temi che riguardano Matematicamente
Domande e risposte
Ordina per
In evidenza
Sia $X$ un insieme e sia $P(X)$ l’insieme delle parti di $X$, cioè l’insieme i cui elementi sono tutti e soli i sottoinsiemi di $X$. Se $f:X->P(X)$ è una funzione, allora si provi che $f$ non è suriettiva.
Per dimostrarlo ho pensato di fare così:
Consideriamo l'insieme $S={x inX|xnotinf(x)}inP(X)$, supponiamo per assurdo che $Ssubef(X)$, quindi $EEx inX$ tale che $f(x)=S$. Ora se $x inS$ si avrebbe ...
Su questo problema ho pochissime nozioni.
devo calcolare questo integrale definito.
$int_(1)^(2) (x-1)/x^2 dx $
dovrei trovare la primitiva e poi sostituire $x=2$ a cui sottrarre il risultato della sostituzione di $x=1$
mi viene solo da riscrivere la derivata in questo modo.
$int_(1)^(2) x/x^2-1/x^2 dx $
$int_(1)^(2) 1/x-1/x^2 dx $
la primitiva di $1/x$ è $log(x)$
ma la primitiva di $1/x^2$ non so quale sia. Di sicuro non $log(x^2)$ perchè è una derivata ...
Buonasera;
l'esercizio richiede di trovare l'equazione della retta tangente alla funzione data nel punto $x_0=-1$
la funzione è la seguente $y=x^3+2x^2-1$
calcolo la derivata prima $y'=3x^2+4x$
sostituisco $x_0=-1$ all'interno della derivata e ottengo il coefficiente angolare della retta tangente
ottengo $m=-1$
trovo le coordinate della $y_0$ sostituendo $x_0=-1$ all'interno della funzione.
$y_0=0$
a questo punto applico la ...
Devo risolvere con un sistema di primo grado il seguente problema:
Determinare un certo numero naturale di due cifre, sapendo che la loro somma è uguale a 10 e che, invertendole di posto, si ottiene un nuovo numero che supera di 14 la metà del numero dato.
Ho trovato quasi subito la soluzione, ovvero il numero 64, dato che invertendo le due cifre che lo compongono ottengo 46, che supera di 14 la metà di 64. Il problema è che ho trovato la soluzione per via intuitiva ...
Determinare tutti i punti doppi della quartica le cui equazioni parametriche razionali sono
X = 2t/(t² - 1), Y = [(t + 1)²]/t².
Ho provato a calcolare le derivate prime di X e di Y e ho visto che non si annullano, ma la parametrizzazione non è regolare e quindi la curva potrebbe presentare un nodo, che non riesco a trovare.
Qualcuno potrebbe aiutarmi?
Ho difficoltà nella risoluzione dell'equazione diofantea
x⁴ - 2x²y - 340y² + x² - y+1=0
Sono riuscito a dimostrare che y deve essere dispari.
Grazie per l'aiuto.
Ciao a tutti!
Sia $f:(a,b] \to \mathbb{R}$ una funzione a valori positivi ed asintoticamente equivalente all'infinito campione $\frac{1}{(x-a)^{\alpha}$ per $x \to a^+$, allora
$\int_a^b f(x)dx$ converge $iff \int_a^b\frac{1}{(x-a)^{\alpha}dx$ converge $iff \alpha <1$.
Cosa dire però nel caso in cui la funzione sia illimitata nell'altro estremo di integrazione, ovvero $f:[a,b) \to \mathbb{R}?$ Esiste un'equivalente "infinito campione" con cui confrontare la funzione integranda?
Ad esempio, nella soluzione di un esercizio ho ...
Sia $Q$ campo dei razionali, $p(x)$ un polinomio di grado $n$, ivi irriducibile, ${x_1,x_2,....,x_n}$ le radici distinte, comunque presa una qualsiasi radice $x_i$, l'estensione $Q(x_i)$ o contiene solamente la radice $x_i$ oppure conterra tutte le radici, mi sbaglio?
Sia $p(x)$ un polinomio a coefficienti in $Q$ , provare l'esitenza di un campo di spezzamento è facile basta usare l'induzione, molto più complicato dimostrarne l'unicità, od in modo equivalente che due campi di spezzamento di uno stesso polinomio sono isomorfi, quale è l'idea che sta alla base della dimostrazione?
Buongiorno, mi chiedo come possa fare a calcolare la velocità cui ribalta il parallelepipedo, immaginando che sia un carrello traslante. In pratica, si supponga che il carrello ribalti quando questo viene fermato all'istante, ruotando attorno al punto A. Immagino di trovare l'energia cinetica rotazionale necessaria a far ribaltare l'oggetto.
Volevo chiedere un chiarimento su due punti teorici però mostrati dal mio professore solo con due esercizi e vorrei generalizzarli.
Il fatto è il seguente:
- se $W<=V => ((W)^⊥)^⊥=W$ normalmente, però se φ ha nucleo => è degenere e non è più vero che $((W)^⊥)^⊥=W$. Ma perché dipenda dall'essere degenere (questo non funzioanre più della formula detta) non ho capito.
- $W⊕W^⊥=W$ (con $W<=V$), e anche qui non è vero per le forme φ con vettori isotropi. Cioè se ho isotropi: ...
Buon sabato sera!
Mi sto sollazzando con la costruzione delle equazioni delle figure geometriche partendo dalle loro definizioni. Ho un problema con l’iperbole. La definizione è: il luogo geometrico dei punti del piano tali per cui è costante la differenza delle distanze da due punti fissi detti fuochi.
Quindi, volendo costituire l’equazione a partire dalla definizione si ha:
Dato un generico punto P(x,y)
Dati i due fuochi F1($x_f1$,$y_f1$) ed ...
Considera un quadrato $ ABCD $ , il triangolo equilatero $ ABE $ , il cui vertice $ E $ è interno al quadrato , e il triangolo equilatero $ BCF $ , il cui vertice $ F $ è esterno al quadrato. Riferisci la figura a un opportuno sistema cartesiano ortogonale e dimostra analiticamente che $ D,E,F $ sono allineati.
Svolgimento:
Ho provato a disegnare la figura , quindi, $ A=(0,0) ; B=(8,0) ; C=(8,8) ; D=(0,8) ; E=(4,7) ; F=(15,4) $.
Ho quindi ricavato l'equazione della retta ...
Non ho capito questo esercizio di matematica, mi potreste aiutare
Stabilisci per quali valori di k appartenente ad R l'equazione $ k^2x^2+(3k-2)y^2=1 $ rappresenta una circonferenza
Grazie dell'aiuto in anticipo
Ho bisogno di voi per capire il comportamento dei quantificatori logici nella definizione di funzione iniettiva
Sappiamo essere
$AA (x,y),f(x)=f(y) → x=y$
e la sua negazione è:
$∀ ( x , y ) , f ( x ) = f ( y ) → x = y$ (non per tutti vale l'implicazione)
$∃ ( x , y ) : f ( x ) = f ( y ) ↛ x = y $ (ovvero esiste almeno un caso in cui l'implicazione è falsa)
$∃ ( x , y ) : f ( x ) = f ( y ) ∧ x ≠ y$ (ovvero esiste almeno un caso in cui l'antecedente è vero ma il conseguente è falso: la funzione assume lo stesso valore in corrispondenza di elementi distinti del ...
Salve a tutti, sono di nuovo qui a chiedere il vostro immenso aiuto.
Devo risolvere l'equazione di convezione-diffusione \(\displaystyle \frac{\partial{\varphi}}{\partial{t}}+a\frac{\partial{\varphi}}{\partial{x}} -k\frac{\partial^2{\varphi}}{\partial{x^2}}=0\) con:
dominio \(\displaystyle [0, L] \)
condizione iniziale \(\displaystyle \varphi(x, 0)=0 \)
e condizioni al contorno \(\displaystyle \frac{\partial{\varphi}}{\partial{x}}=sin(\frac{2\pi at}{L}) \) a \(\displaystyle x=0 \) e ...
Ciao a tutti,
sto iniziando a studiare le funzioni in variabile complessa.
Ho un esercizio che mi chiede il dominio di una funzione radice:
$sqrt(z^2 - 4)$
Non ho mai affrontato la funzione radice complessa (neanche nelle dispense delle lezioni che peraltro non seguo perché lavoro) e quindi non conosco quali sono le condizioni di esistenza della funzione. Trasformando la funzione complessa nelle sue componenti reali, vale la condizione di positività o di nullità del radicando? Quindi dovrei ...
Sia $Q$ il campo dei razionali, sia $p(x)$ un polinomio di grado $n$ ivi irriducibile, ed indichiamo con $A={x_1,x_2,...x_n}$ l'insieme delle $n$ radici distinte,se il più piccolo sottoinsieme da aggiungere a $Q$ per generare il campo di spezzamento $E$ del polinomio coincide con $A$, cosa posso dire sul gruppo di galois di tale polinomio? Dovrà avere ordine $n!$?
Buongiorno, mi sono bloccato con il seguente limite $lim_((x,y) to (0,0))(x^2y)/(x^4+y^2)$.
In particolare, passando alle coordinate polari ottengo
$f(x,y)=f(rho,beta)=(rho^2cos^2(beta)sin(beta))/(rho^4cos^4(beta)+sin^2(beta))$
ora la funzione $f(rho,beta) $tende a zero quando $rho$ tende a zero, per ogni $beta in[0,2pi]$, però non uniformemente. L'autore per dimostrarlo procede nella seguente maniera, considera la curva $y=x^2$ per cui $rho=sin(beta)/cos^2(beta)$, dopodiché valuta la funzione con tale valore, per cui ottiene $f(rho,beta)=1/2$ essendo ...