Matematicamente
Discussioni su temi che riguardano Matematicamente
Domande e risposte
Ordina per
In evidenza
Buonasera, chiedo aiuto per il seguente esercizio di fisica:
Una pallina di massa $m = 100 g$ e di dimensioni trascurabili viene lanciata con velocità orizzontale $v_0$ incognita lungo un piano orizzontale. Dopo un certo tratto incontra una discesa a forma di arco di circonferenza, avente raggio $R = 70 cm$. Sapendo che la pallina si stacca quando raggiunge l’angolo $alpha = 30°$ mostrato in figura, calcolare $v_0$ trascurando ogni attrito e l’andamento ...
potreste darmi una mano a svolgere questo esercizio?
In un tubo di gomma da giardino, lungo 10 m e di 4 cm di diametro, fluisce 1 l/s d’acqua (fluido reale). Calcolare la portata volumetrica quando al tubo di 10 m venga aggiunto un altro tubo di 10 m di 2 cm di diametro.
Sia data un'onda elettromagnetica che viaggia lungo l'asse x con velocità $ vecv=0.5cx^ $, sapendo che l'espressione del campo elettrico è pari a $ vecE=E_(0)sin(kx-omega*t)y^ $ con $ E_0=0.1mV $ determinare l'espressione del campo magnetico.
Innanzitutto il campo magnetico sarà diretto lungo l'asse z, poiché deve sarà ortogonale tanto ad $vecE$ quanto alla direzione dell'onda che viaggia lungo $x$. Per quanto riguarda il modulo di B, sfrutto innanzitutto la relazione ...
Ho un dubbio su questo problema di Fisica II:
Il prof aveva accennato che in ogni punto il campo è dato da: CampoPiano - CampoDisco
1) Il disco effettivamente non viene inserito (perché la traccia dice che è stato fatto un foro), quindi perché devo sottrarre il campo del disco? Non è 'superficiale' dato che il foro è piccolo rispetto alle dimensioni del piano indefinito?
2) Seguendo il consiglio del prof, è corretto?:
$ \barE(P) = \sigma/(2ε_0) d/(\sqrt(d^2+R^2)) = 2.77 \cdot 10^9 N/C \hat{j} $
E quindi:
$ \barE(C) = 0 $
Sia $\varphi: (0,+infty)xx(0,2pi)->RR^3$ con $\varphi(r, \theta)=(rcos(\theta),rsin(\theta),\theta)$ e $S$ l'immagine di $\varphi$.
(a) Mostrare che $S$ è una superficie e $\varphi$ è una sua parametrizzazione.
(b) Calcolare la prima e la seconda forma fondamentale associata alla parametrizzazione data.
(c) Calcolare la curvatura gaussiana di $S$ in ogni suo punto.
Io ho fatto così:
(a) Mostriamo che $\varphi$ è una parametrizzazione: $\varphi$ è un omeomorfismo con la sua ...
Buonasera probabilmente quella che vi sto per fare è una domanda stupida, ma non riesco a capire perché se le colonne della matrice associata ad un applicazione lineare sono indipendenti allora le immagini calcolate sui vettori della base di partenza sono indipendenti tra di loro. Nella matrice associata io metto le coordinate dell’immagine sulla base di partenza rispetto alla base di arrivo. Questo ragionamento a me torna solo nel caso in cui la base di arrivo sia la base canonica, ma ho visto ...
Sia dato il seguente circuito, formato da tre resistenze, una d.d.p. variabile $E1$ ed una d.d.p. fissa $E2$. Dati i seguenti valori dei parametri $R1= 5 Ω$, $R2= 10 Ω$, $R3= 20 Ω$, $E2 = 2 V$ , trovare il valore di $E1$ per cui la corrente $I2$ che scorre nella resistenza $R2$ è nulla.
Non saprei come impostare il problema, mi dareste una mano per favore?
Buonasera a tutti.
ho riscontrato problemi a risolvere un esercizio di un vecchio compito di cui vi metto il testo qui sotto:
ho provato ipotizzare che la molla in questione mi desse la possibilità di "trasformare" quella cerniera in un incastro però non so se è corretto e per di più poi non so come concludere l'esercizio in quel caso.
vi metto qui sotto i miei svolgimenti.
Grazie in anticipo
Il sifone permette di svuotare un contenitore dell’acqua (fluido ideale) in eccesso fino all’altezza hA. Il tubo ABC, di sezione costante e 100 volte minore della superficie del contenitore, deve essere inizialmente riempito, e da quell’istante il liquido uscirà dal tubo in C. Rispetto alla quota iniziale dell’acqua, i livelli sono hA = -20 cm, hB = 50 cm, hC = -60 cm. Calcolare (nell’istante iniziale) velocità di uscita dell’acqua in C.
l'equazione di bernoulli corretta ...
L'esponente $\beta$ è un parametro reale.
Avevo pensato di agire come segue: siccome $e^(1/n)$ una successione che assume il suo massimo pari ad $e$ per $n = 1$, mentre $e^(1/(n+1))$ assume il suo minimo pari a $1$ all'infinito, potrei maggiorare la differenza degli esponenziali come segue
$n^\beta(e^(1/n) - e^(1/(n+1))) < n^(\beta)(e - 1)$
Considero allora la serie
$\sum_{n = 1}^{\infty} n^\beta(e - 1) = (e - 1)\sum_{n = 1}^{\infty} n^\beta$
che converge per $\beta < -1$. E' corretto?
Mi aiutate con questi problemi?
1)La copertura di questo gazebo ha la forma di una piramide quadrangolare regolare avente l'apotema di 3,9m. Per lavare la sua superficie sono stati spesi &amp;euro;842,40 in ragione di &amp;euro;15 al metro quadrato. Quanto misura uno spigolo di base?
2)il contadino giacomo ha costruito una serra per proteggere le piante del suo orto. La serra ha la forma di una piramide quadrangolare. Lo spigolo di base misura 30m e lo spigolo laterale 17m. ...
Buongiorno, gentilmente qualcuno potrebbe aiutarmi con l'esercizio seguente? Vi ringrazio.
Ho provato a calcolare il tempo ricavandomi prima il calore usando la legge della calorimetria (ho convertito 0,5 L del Volume in 0,5 Kg di massa):
$ Q = mc\DeltaT $
e poi dividendo il risultato per la potenza (1 kW) ma la soluzione non combacia
Un condensatore cilindrico di capacità C = 10 nF è tenuto ad una differenza di potenziale di 50 Volt da una forza elettromotrice esterna. Quanto vale la carica presente sulle armature? Di quanto varia tale
carica se nel condensatore è inserito un dielettrico di costante dielettrica relativa k=3.5?
Risoluzione:
$ Q=CV = 10nF * 50 V = 500 nC $
Nel caso in cui si inserisca un dielettrico di costante dielettrica relativa $ epsilon_k = 3.5 $ si ha dunque:
$ epsilon_m = epsilon_0 epsilon_r $ dove $ epsilon_m $ è la costante ...
Una macchina è composta da due moli di gas perfetto biatomico che occupano un volume iniziale di 40 litri ad una temperatura di 400 K. La macchina compie un'espansione isoterma irreversibile fino ad un volume di 100 litri; un raffreddamento isocoro irreversibile e infine una compressione adiabatica reversibile (che chiude il ciclo).
Calcolarne il rendimento, la variazione di entropia dell’universo in funzione dei possibili valori di calore scambiato durante l’espansione e darne una ...
Un condizionatore con un coefficiente di prestazione del 30% rispetto a quello di un frigorifero di Carnot, viene utilizzato per mantenere fresca la casa a 24°C mentre la temperatura all’esterno è di 35°C. L’insieme di pareti, finestre, soffitto e pavimenti sono termicamente equivalenti ad una parete uniforme, con una superficie di 200 m2 , composta da uno strato interno di 20 cm di calcestruzzo e da 3 cm di intonaco. Determinare la temperatura tra i due strati di materiale e la potenza ...
Una mole di gas perfetto biatomico compie questo ciclo: all'inizio è in equilibrio termodinamico con l’ambiente esterno a temperatura Th = 900 K. La pressione esterna si dimezza e il sistema compie una trasformazione isoterma irreversibile fino a riportarsi in equilibrio termodinamico con l’ambiente. La seconda trasformazione è un’espansione adiabatica reversibile fino alla temperatura Tc = 400 K, dove il sistema si trova in equilibrio termodinamico con un secondo ambiente esterno. Anche in ...
Sera a voi.
Volevo chiedere un aiuto su un conto per cui vale per hp che $(ar)/b≪1$
Io ho $(1/r-a/b-(a^2r)/b^2)$ e dovrei arrivare ad avere solo 1/r
Oppure altro conto simile: $(1/r^2-a/(br)-a^2/b^2)=1/r$
Non capisco bene come impostare il ragionamento nei due casi:
mi viene da dire che
- 1/r non ci crea problemi
- considero $a/b$ per hp $(ar)/b≪1 => a/b≪1/r$ quindi sopravvive il primo temrmine della somma e questo è trascurabile
- passo a $(a^2r)/b^2$ lo scrivo come ...
Determinare l’espressione del campo magnetico che si genera all’inter-
no di un condensatore piano circolare in cui è presente un dielettrico
diamagnetico di costante dielettrica relativa $ k=3 $ quando il condensa-
tore si sta caricando. Si assuma che i piatti del condensatore hanno
raggio pari a $ r = 5 mm $ , che la separazione tra i due piatti è pari a
$ d = 0.1 mm $ e che il condensatore si carichi in maniera uniforme nel
tempo $ t = 1s $ da $ Q0 = 0 $ a ...
Si determini l’intensità del campo elettrico sulla superficie di un nucleo di piombo 208 che contiene 82 protoni e 126 neutroni assumendo che il nucleo abbia forma sferica e volume 208 volte maggiore del volume di un protone. (Si consideri il protone una sfera di raggio $ r = 1.2 × 10^(−15) m $).
Non saprei dove partire, qualche hint?