Università

Discussioni su temi che riguardano Università della categoria Matematicamente

Algebra, logica, teoria dei numeri e matematica discreta

Discussioni su Algebra astratta, Logica Matematica, Teoria dei Numeri, Matematica Discreta, Teoria dei Codici, Algebra degli insiemi finiti, Crittografia.

Analisi matematica di base

Quando all'Università i problemi con la matematica tolgono il sonno, cerca aiuto qui

Analisi Numerica e Ricerca Operativa

Discussioni su Analisi Numerica e Ricerca Operativa

Analisi superiore

Discussioni su calcolo di variabile complessa, distribuzioni, Trasformata di Fourier, Teoria della misura, Analisi funzionale, Equazioni alle derivate parziali, Calcolo delle Variazioni e oltre.

Fisica, Fisica Matematica, Fisica applicata, Astronomia

Discussioni su argomenti di Fisica, Fisica Matematica, Astronomia e applicazioni della Fisica

Geometria e Algebra Lineare

Discussioni su problemi, esercizi e teoremi che riguardano la geometria, l'algebra lineare e la topologia

Informatica

Discussioni su argomenti di Informatica

Ingegneria

Discussioni su tematiche di ingegneria che non trovano collocazione specifica negli altri forum

Matematica per l'Economia e per le Scienze Naturali

Discussioni su argomenti di matematica per le scienze economiche e finanziarie, la teoria dei giochi, e per le scienze naturali

Pensare un po' di più

Spazio dedicato a problemi che vanno al di là dei semplici temi d'esame o degli esercizi standard.

Statistica e Probabilità

Questioni di statistica, calcolo delle probabilità, calcolo combinatorio


Domande e risposte

Ordina per

In evidenza
In evidenza
Più recenti
Più popolari
Con risposta
Con miglior risposta
Senza risposta
Angus1956
Sapendo che $f in L^2(RR^n)$, allora vale $lim_(epsilon->0+)\int_(RR^n)e^(-i<x,xi> -epsilon|x|)f(x)dx=\mathcal{F}_2f(xi)$ in $L^2(RR^n)$, dove $\mathcal{F}_2f$ indica la trasformata di Fourier in $L^2(RR^n)$. Intanto al primo termine dopo il limite abbiamo una trasformata di Fourier in $L^1(RR^n)$, ovvero $\mathcal{F}_1(e^(-epsilon|x|)f(x))(xi)$ e quindi in teoria per essere ben posta si dovrebbe avere $e^(-epsilon|x|)f(x)inL^1(RR^n)$, ma non mi risulta si possa evincere in qualche modo... Inoltre per la risoluzione avevo pensato di considerare la successione ...
1
29 dic 2023, 21:31

Silver18021
Buongiorno a tutti, mi sto da poco approcciando al calcolo di integrali doppi ma ho un dubbio nell'affrontare un esercizio apparentemente semplice. Devo calcolare \( \int_\Omega \frac{y}{1+xy}\ \text{d} x \text{d} y \text{ }\Omega=[0,1]\text{x}[0,1] \) Il calcolo dell'integrale indefinito in se non mi crea (troppi) problemi ma se applico gli estremi di integrazione non so come fare, perche secondo i miei calcoli ottengo un ln(0)... Devo applicare il teorema che afferma che se un insieme è ...

ffeeddee95
Salve a tutti, ho un dubbio su un problema, il testo é il seguente: Una macchina di massa 1700 kg e potenza massima di 80 kW sale su una strada inclinata di 15°. Qual è la velocità massima della macchina in unità di km/h? (g=9.81 m s) Sapendo che la potenza equivale al prodotto scalare tra la forza (forza peso in questo caso) e la velocità, ho risolto così: v=P/(F cos 15°). La soluzione del professore invece é questa: indicando con h l’altezza della strada e con L la sua lunghezza; ...

sottostee
Buongiorno a tutti, vorrei proporvi un esercizio che non riesco ben a capire come risolvere. Ringrazio anticipatamente chi volesse aiutarmi. Considera il sottospazio W = {$x_1$ + $2x_2$ + $3x_3$ + $4x_4$ + $5_5$ = 0} di $CC^3$. Determina 3 sottospazi A,B,C $sub$ W, tutti di dimensione almeno 1, tali che W = A ⊕ B ⊕ C.

giusmeg
Salve chi mi aiuta con il diagramma di Bode di questa funzione di trasferimento? Perché ho chiari i concetti teorici ma non riesco a metterli in pratica.... grazie mille $ F(jomega)=(1+jomega)/((1+jomega0,1)^2(1+jomega10)) $
4
8 gen 2024, 17:55

tkomega
Determinare la capacità equivalente del sistema di condensatori in figura vista dai punti A e C e vista dai punti A e B sapendo che C1 = 200 nF , C2 = 100 nF , C3 = 400 nF C4 = 300 nF (Vedi foto allegata) Il modo in cui risolverei il problema è: Vedendo il sistema da A e C calcolo prima il condensatore equivalente in serie di c1 e c4 poi quello sempre in serie di c2 e c3 e infine calcolo il condensatore equivalente totale come somma in serie degli equivalenti c1c4 e ...

kiop01
Ciao ancora, vorrei controllare la correttezza dello svolgimento del seguente esercizio: Una ditta artigianale ha un guadagno settimanale medio di 1000 euro con una deviazione standard di 200 euro. Si supponga, inoltre, che i guadagni settimanali siano indipendenti e identicamente distribuiti. a) Calcolare approssimativamente la probabilità che dopo 36 settimane lavorative la ditta abbia guadagnato meno di 35000 euro. b) Stimare il numero di settimane lavorative necessarie per superare i 40000 ...
8
5 gen 2024, 15:15

tkomega
Buongiorno ragazzi, purtoppo non ho il testo dell'esercizio davanti poiché era un esercizio di esame, quindi riscriverò il testo a memoria da ciò che rammento : Si consideri una spira circolare di raggio r=5cm immersa in un campo magnetico perpendicolare alla spira, la spira ha resistenza totale $ R=10 omega $ e il camp $ epsilon=-d/dtphi_B =-d/dt intintvecBdvecs = -(dB)/dt * pir^2 $ o magnetico varia da $ B_0 = 0 T $ a $ B_1 = 2.5 T $ in un intervallo di tempo pari a $ Deltat=25 s $ . Calcolare il valore della corrente ...

Fede_16
Salve, mi sono imbattuto in questo esercizio di fluidodinamica che però mi dà una difficoltà nell'impostazione. Sono date due vasche cilindriche (della stessa forma) collegati da una tubazione di raggio $R$ noto. Sono riempito di un liquido newtoniano di densità $\rho$ e viscosità $\mu$. La tubazione è collegata attraverso un braccio rigido di lunghezza $l$ ad sistema che permette la rotazione, come in figura. Quindi l'asta di collegamento fa ...

Davv12
Salve a tutti, sto cercando di risolvere il seguente problema di fisica: Due masse puntiformi m1=2.0 kg e m2=1.5 kg, collegate tra loro da un filo ideale, scivolano su di un piano scabro inclinato di un angolo θ = 30◦ rispetto all’orizzontale. Sapendo che i coefficienti di attrito dinamico tra le masse ed il piano sono μ1 = 0.15, μ2 = 0.20 si determinino: 1) l’accelerazione del sistema; 2) la variazione di energia cinetica quando le masse hanno diminuito la loro altezza di una quantit`a ...

xineohp
Ciao a tutti, sto letteralmente impazzendo con il seguente esercizio: devo trovare il volume dell'intersezione tra il cono ed il cilindro aventi rispettivamente equazione \(\displaystyle C: z=2-\sqrt{x^2+y^2} \) \(\displaystyle Cil: (x-1)^2+y^2=1 \) con \(\displaystyle 0 \leq z \leq 2 \) Ho provato a ragionare così: posto \(\displaystyle D:= C \cap Cil \) si ha che \(\displaystyle Vol_{D} = \int \int \int_{D} 1 \, dx dy dz = \int \int_{Base_{D}} \bigg( 2-\sqrt{x^2+y^2} \bigg) \, dx dy = ...
6
5 gen 2024, 14:17

ncant04
\[ \lim_{n \to +\infty} \frac{(-1)^n}{1+\frac{1}{\sqrt{n}}} = \]Nel caso di $\sum_{n=1}^{\infty}\frac{(-1)^n}{\sqrt{n}}$, posso prima riscriverla come \[ \sum_{n=1}^{\infty} (-1)^n \frac{1}{\sqrt{n}} \] Si tratta di una serie a termini di segno alternato, per cui verifico se il criterio di Leibniz sia applicabile: \[ \frac{1}{\sqrt{n}} \geq 0 \qquad \forall n \geq 1 \qquad \text{OK} \] la successione $ \frac{1}{\sqrt{n}} $ è decrescente; $ \frac{1}{\sqrt{n}} \to 0 $ per $ n \to +\infty $. [/list:u:a99zbj6q] Il criterio di Liebniz è ...
4
7 gen 2024, 13:56

mona312
Ho svolto questa equazione: y’=x+xy^2 e mi è uscita corretta [ tan(x^2/2 +c) ]; il problema è che ho anche messo come soluzione, la sua soluzione stazionaria, ovvero zero, se non sbaglio, ma tra le soluzioni non risulta. È la seconda volta che mi capita (l’altra funzione era: y’=yx^2) e vorrei capire il perché. Come so che devo scartare la soluzione stazionaria? Grazie in anticipo!
8
6 gen 2024, 15:39

ncant04
Si consideri $ t \geq 0 $ e la seguente funzione \[ f(t) = \int_{0}^{t} \max \left(0, \sin (x) \right) \] Mi vengono posti i quesiti seguenti: - Verificare che la funzione sia effettivamente definita su tutto $ \mathbb{R}^+ $; - Calcolare i seguenti limiti: $ \lim_{t \to +\infty} f(t) $, $ \lim_{t \to 0} f(t) $. [/list:u:3bst3z56] Per il primo quesito, riscrivo $ f(t) $ come \[ f(t) = \int_{0}^{t} g(x) \,dx \] dove $ g(x) = \max \left(0, \sin (x) \right) $, che posso anche scrivere come una funzione definita a ...
1
7 gen 2024, 15:24

Fede_16
Ciao! Oggi propongo un esercizietto, in realtà nemmeno troppo articolato, sull'equazione del Bernoulli. Dato un sistema formato da 2 serbatoi cilindrici ($A$ e $B$) della stessa forma collegati da una tubazione di diametro $\phi$. Il livello in $A$, denominato $h_A$, è maggiore di $h_B$. I livelli son tenuti costanti dalla portata $G$ che, in condizioni stazionarie, entra in $A$ ed esce in ...

Cannelloni1
Buongiorno e buon anno a tutti i lettori e scrittori del forum. Vi sottopongo un controesempio alla seguente proposizione: Sia $I$ un ideale principale, allora $\sqrt{I}$ è principale Per il nostro controesempio prendiamo $A=\mathbb{K}[x,y,z,t,w]$ $/(x^2-zt,y^2-zw)$ e definiamo $I=(z)$ che è principale per definizione. Non è difficile vedere che $\sqrt{(z)}=(x,y,z)$, ma questo non è sufficiente a dire che $\sqrt{(z)}$ non sia principale, anche se non sembra così ...

m.e._liberti
Salve, vi propongo questo esercizio di fisica. Un carrello di massa m si muove su un binario costituito da un tratto rettilineo AB, di lunghezza 2R = 10 m, un ottavo di circonferenza BC di raggio R = 5 m e un ottavo di circonferenza concava CD, raccordata alla precedente, di raggio R. Il tratto AB è scabro con coefficiente di attrito $\mu_d$ = 0.2, il tratto BD liscio. a) Si calcoli il valore della velocità inziale $\v_0$ con cui il carrello passa per A, affinché raggiunga ...

gandolfo_m
Ciao a tutti, avrei un contarello che non mi torna proprio, in particolare il prof dice che il prodotto di due campi (che a breve vi mostrerò) dovrebbe essere nullo. Ma a me non torna. Dopo vari conti sono arrivato ad avere per la componente x dei campo $E_(0x)=-iCalpha(mpi)/acos(mpi/ax)sin(npi/by)$ e $B_(0x)=iCepsilon_rmu_rk/c(npi)/bsin(mpi/ax)cos(npi/by)$ Si deve svolgere $vecE*vecB=0$ ma a me non sembra annullarsi quella componente Non capisco se sbaglio solo il conto ma ho provato un po' di identità trigonometriche
7
26 nov 2023, 09:55

pincopallino042
Salve a tutti. Sto cercando di calcolare $ \lim_{n \to \infty} \frac{e^{\frac{1}{n^2}}-1}{\sin \left(\frac{1}{n}\right) - \frac{1}{x}} $. Ho notato che si tratta di una forma indeterminata $ \frac{0}{0} $. Potrei applicare de l'Hopital, ma sospetto che verrà un calcolo mostruoso. Noto però che, per i limiti notevoli, \[ e^{\frac{1}{n^2}} \sim \frac{1}{n^2} \] [nota]$\frac{1}{n^2} \to 0 $ per $ n \to +\infty $[/nota]. e che \[ \sin \left( \frac{1}{n}\right) \sim \frac{1}{n} \] [nota]$\frac{1}{n} \to 0 $ per $ n \to +\infty $[/nota]. Sostituendo tutto all'interno del limite che ...

pincopallino042
Salve a tutti. Come da titolo, sto studiando $ f(x) = | x | + \sin \left( | x | \right) $ e avrei bisogno di un controllo. Si tratta di una funzione continua in tutto $ \mathbb{R} $, in quanto somma di una funzione continua in $ \mathbb{R} $ ( $ | x | $ ) e di una composizione di funzioni continue ( $ \sin \left( | x | \right) $). Noto la presenza di valori assoluti e di una funzione trigonometrica, quindi mi chiedo immediatamente se la funzione è pari e/o periodica. \[ f (-x) = | - x | + \sin \left( | -x | \right) = ...