Università
Discussioni su temi che riguardano Università della categoria Matematicamente
Algebra, logica, teoria dei numeri e matematica discreta
Discussioni su Algebra astratta, Logica Matematica, Teoria dei Numeri, Matematica Discreta, Teoria dei Codici, Algebra degli insiemi finiti, Crittografia.
Analisi matematica di base
Quando all'Università i problemi con la matematica tolgono il sonno, cerca aiuto qui
Analisi Numerica e Ricerca Operativa
Discussioni su Analisi Numerica e Ricerca Operativa
Analisi superiore
Discussioni su calcolo di variabile complessa, distribuzioni, Trasformata di Fourier, Teoria della misura, Analisi funzionale, Equazioni alle derivate parziali, Calcolo delle Variazioni e oltre.
Fisica, Fisica Matematica, Fisica applicata, Astronomia
Discussioni su argomenti di Fisica, Fisica Matematica, Astronomia e applicazioni della Fisica
Geometria e Algebra Lineare
Discussioni su problemi, esercizi e teoremi che riguardano la geometria, l'algebra lineare e la topologia
Informatica
Discussioni su argomenti di Informatica
Ingegneria
Discussioni su tematiche di ingegneria che non trovano collocazione specifica negli altri forum
Matematica per l'Economia e per le Scienze Naturali
Discussioni su argomenti di matematica per le scienze economiche e finanziarie, la teoria dei giochi, e per le scienze naturali
Pensare un po' di più
Spazio dedicato a problemi che vanno al di là dei semplici temi d'esame o degli esercizi standard.
Statistica e Probabilità
Questioni di statistica, calcolo delle probabilità, calcolo combinatorio
Domande e risposte
Ordina per
In evidenza
buonasera stavo risolvendo una trasformata di fourier di una funzione fratta ma non ricordo gli ultimi passaggi. Di seguito vi scrivo la traccia e il punto in cui sono arrivato. Spero che mi possiate aiutare che domani ho l'esame di metodi matematici e quindi sto cercando di definire gli ultimi argomenti.
la traccia è: $ f(x) = 5/(3+(x-2)^2) $
Ho preso una funzione ausiliaria $ g(x) = 1/(1+x^2) $ e ho calcolato la sua trasfromata e mi esce come risultato:
$ g(k) = +- pi exp (|k|) $
poi mi sono scomposto la ...

Buonasera, ho letto che i telescopi non ingrandiscono le stelle, ma non mi é chiaro il motivo, mentre so per certo che essi aumentano la visibilità delle stelle altrimenti poco visibili ad occhio nudo. Mi saprese dire dal punto di vista matematico e fisico (anche con qualche formula) perché i telescopi non ingrandiscono le stelle e se lo fanno le immagini appaiono sfocate?
Salve a tutti, sto risolvendo il seguente problema di fisica:
Un punto si muove con velocità relativa costante vr = 0.5 m/s in direzione radiale verso il centro di una piattaforma circolare orizzontale che ruota con velocità angolare w= 2 rad/s. All’istante iniziale t' = 0 il punto si trova ad una distanza R = 1 m dal centro della piattaforma. Determinare in direzione e modulo la velocità assoluta del punto all’istante t* = 3 s.
Nello svolgimento ho pensato di fare riferimento a questa ...
(a) Fare un esempio di un rivestimento connesso non normale $p:(\tilde X, \tilde x_0)->(K,x_0)$ dove $K$ è la bottiglia di Klein.
(b) Si scelga $x_0inK$ e $\tilde x_0 in p^-1(x_0)$. Dire a cosa corrisponde $H=p_{star}(pi_1((\tilde X, \tilde x_0)))$ in $pi_1(K,x_0)$ per il rivestimento scelto.
(c) E' vero che $H$ non dipende dal punto base $\tilde x_0 $ scelto?.
Io ho fatto così:
(a) Consideriamo la glissosimmetria $a: (x,y)->(-x,y+1)$ e la traslazione $b: (x,y)->(x+1,y)$, abbiamo che $pi_1(K)$ è ...

vorrei conferma di aver capito bene.
per una trasformazione adiabatica reversibile $ \DeltaS_U=0 $ => $ \DeltaS_a=0 $ perchè non c'è scambio di calore => $ \DeltaS_s=0 $
per una trasformazione adiabatica irreversibile $ \DeltaS_U>0 $ => $ \DeltaS_a=0 $ perchè non c'è scambio di calore => $ \DeltaS_s=nc_vln(T_f/(T_i))+nRln(V_f/(V_i)) >0 $
altra cosa, un'espansione libera è adiabatica e isoterma. pertanto essendo adiabatica Q=0, essendo isoterma $ \DeltaU=0 $ e pertanto L=0 tra l'altro essendo pressione ...

In figura (parte A) è rappresentata una superficie poggiata sul piano xy di un sistema di riferimento cartesiano. Nella parte B della figura la superficie è rappresentata vista dall’alto. Le dimensioni della superficie sono: h=10 cm, L=8 cm e l=5 cm, l’angolo theta è pari a 45 gradi. Calcolare il flusso attraverso al superficie di un campo elettrico uniforme che in coordinate cartesiane assume la forma $vecE = 1 hatx + 5 haty N/C $
Come ho risolto io:
Disegno e calcolo le componenti lungo gli assi x e y ...
Salve a tutti, ho un dubbio con un esempio di sottospazio affine.
Sia $A_2$ il piano affine reale associato allo spazio dei vettori liberi $V^2$. Siano $A\in A_2, v\inV^2$. Considero $W=<v>\inV^2$. Allora $S(A,<v>)$ il sottospazio affine di $A_2$ passante per $A$ e di giacitura $<v>$ sarà formato da ${P\inA_2 | vec(AP) \in <v>}$.
Ora, un vettore libero non è altro che una classe di equivalenza formata da tutti i vettori applicati ...

Salve a tutti sto cercando di risolvere il seguente problema:
Una massa scivola su di una guida. La guida e' rettilinea sino al punto A, poi costitutita
da segmenti di circonferenza di raggio R=10 m sino al punto D ed infine nuovamente
rettilinea sino al punto E. Il tratto A-D e' privo di attrito mentre tra D ed E la guida
`e scabra con coefficiente di attrito dinamico μ=0.85 ed angolo θ = 20◦ Si determini:
1) la massima altezza h che permette alla massa di restare in contatto con la ...

Un recipiente cilindrico, isolato dall’ambiente, è diviso a metà da un pistone conduttore, in grado di scorrere senza attrito, inizialmente bloccato. Una delle due parti del cilindro contiene una mole di argon ad una pressione di 4 atmosfere e l’altra parte contiene elio ad un’atmosfera. Entrambi i gas possono essere considerati ideali e monoatomici. La temperatura del sistema è inizialmente di 300 K. Si lascia il pistone libero di muoversi e si aspetta che il sistema raggiunga una situazione ...

Buonasera chiedo aiuto per il seguente esercizio di dinamica:
Un blocco di massa $100g$ comprime una molla di costante elastica $k = 20 N/m$. Il blocco viene lasciato libero e dopo un tratto orizzontale privo di attrito, sale lungo un piano scabro con coefficiente d’attrito dinamico $0.5$ e inclinato di $30°$. Calcolare la quota massima raggiunta dal corpo ($h_max$).
usando la conservazione dell'energia:
$E_(m,i)=1/2*k*x^2$ ovvero la sola ...
Ho modificato il messaggio per porvi una domanda. Un proiettile di massa m urta in modo anelastico un'asta di massa M libera di ruotare senza attrito attorno ad un asse orizzontale passante per il suo centro. La velocità iniziale del proiettile è $v_0$ mentre quella di impatto è $v_1$. L'accelerazione angolare dell'asta dopo l'urto è w. Come calcolo l'energia dissipata durante l'urto?
Sia $p:(\tilde X, \tilde x_0)->(X, x_0)$ un rivestimento connesso per archi e localmente connesso per archi. E' vero che presi $\gamma$ e $\gamma'$ due cammini continui in $\tilde X$ che partono da $\tilde x_0$ e arrivano in $\tilde x_0$ se sono gli stessi in $\pi_1(\tilde X, \tilde x_0)$ allora i cammini $p \circ \gamma$ e $p \circ \gamma'$ sono gli stessi in $\pi_1(X, x_0)$?
Dovrebbe essere falso poichè se considero il rivestimento universale di $S^1$, ...

Calcolare l’intensità del campo magnetico lungo la circonferenza mediana di un solenoide toroidale costituito da N = 2 × 10^4 spire e avente raggio del toroide R = 30 cm e raggio degli avvolgimenti r = 2. mm in funzione dell’intensità della corrente I (vedi figura 2). Si consideri il toroide nel vuoto.
Risolverei il problema così:
$ oint_(B) vecBdvecl = mu_0 I <=> B2piX = Nmu_0 I $ dove N è il numero di spire e X è il generico raggio della circonferenza, quindi:
$ B = (Nmu_0 I)/(2piX) $
ora, poiché il raggio esterno ...

In figura è rappresentato una circonferenza di spessore trascurabile, di massa pari a m = 1 kg e di raggio pari a R = 50 cm di materiale non conduttore. In due punti diametralmente opposti sono fissate due cariche (q1 = 10 nC e q2 = −10 nC). All’instante t = 0 s la posizione della carica positiva e tale da formare un angolo α rispetto al centro della circonferenza di $alpha = 45° $. Il sistema è immerso in un campo elettrico uniforme orientato come in figura di intensità E = 1 V /m. ...

Un elettrone è abbandonato in quiete in un campo elettrico uniforme, di modulo $E = 2 × 10^6 V/m$, che lo accelera per una distanza $h= 0.5 cm$. Calcolare l’energia cinetica acquistata dall’elettrone.
Risolvo il problema così:
poiché l'elettrone si trova in un campo elettrico uniforme si muoverà di moto rettilineo uniformemente accelerato, per cui : $ 1/2 at^2 = h= 0.005 m <=> t= sqrt((0.01 m )/(a)) $
dove $a$ è possibile essere ricavata dalla relazione:
$ ma=eE <=> a=(eE)/(m) $ quindi risostituendo in ...

Alla base di un recipiente cilindrico aperto contenente un fluido ideale, viene praticato un foro la cui sezione è l’1% di quella del recipiente. Se l’altezza del fluido è 1 m, calcolare il tempo necessario per lo svuotamento del recipiente. Si supponga che la velocità sia massima all’istante t = 0. Il rapporto del quadrato delle due superfici è 10−4 .
io ho scritto l'equazione di continuità: $ Sv=S_fv_f $ in cui f indica il foro da cui $ v_f=100v $
e Bernoulli: ...



Ciao a tutti. Sono alle prese con un esercizio sulla completezza degli spazi di Hilbert.
Sono agli inizi per quanto riguarda lo svolgimento di tali esercizi e non sono ancora molto pratico. Tuttavia ho un esercizio che non riesco ad impostare e mi chiedevo se potevate darmi cortesemente una mano.
Lo spazio $H={f:\int_{0}^{1} x\abs{f(x)}^2 dx <+\infty}$ dotato di prodotto scalare: $(f,g):= \int_{0}^{1} x \bar{f(x)}g(x) dx}$, risulta uno spazio di Hilbert. Verificare la sua completezza. Mostrare inoltre che $L^2(0,1)\subset H$ e che quindi esistono ...
E' vero che per ogni $S_1,S_2$ superfici in $RR^3$ esistono due aperti non vuoti $W_1\subseteqS_1$,$W_2\subseteqS_2$ che sono diffeomorfi?
Io ho fatto così:
Sia $S$ una superficie in $RR^3$ allora $AAp inS$ esiste $V$ intorno di $p$ in $RR^3$ con $\varphi:U\subseteqRR^2->SnnV$ parametrizzazione con $U$ aperto di $RR^2$. Sia $q in U$ tale che $\varphi(q)=p$, allora siccome ...