Università

Discussioni su temi che riguardano Università della categoria Matematicamente

Algebra, logica, teoria dei numeri e matematica discreta

Discussioni su Algebra astratta, Logica Matematica, Teoria dei Numeri, Matematica Discreta, Teoria dei Codici, Algebra degli insiemi finiti, Crittografia.

Analisi matematica di base

Quando all'Università i problemi con la matematica tolgono il sonno, cerca aiuto qui

Analisi Numerica e Ricerca Operativa

Discussioni su Analisi Numerica e Ricerca Operativa

Analisi superiore

Discussioni su calcolo di variabile complessa, distribuzioni, Trasformata di Fourier, Teoria della misura, Analisi funzionale, Equazioni alle derivate parziali, Calcolo delle Variazioni e oltre.

Fisica, Fisica Matematica, Fisica applicata, Astronomia

Discussioni su argomenti di Fisica, Fisica Matematica, Astronomia e applicazioni della Fisica

Geometria e Algebra Lineare

Discussioni su problemi, esercizi e teoremi che riguardano la geometria, l'algebra lineare e la topologia

Informatica

Discussioni su argomenti di Informatica

Ingegneria

Discussioni su tematiche di ingegneria che non trovano collocazione specifica negli altri forum

Matematica per l'Economia e per le Scienze Naturali

Discussioni su argomenti di matematica per le scienze economiche e finanziarie, la teoria dei giochi, e per le scienze naturali

Pensare un po' di più

Spazio dedicato a problemi che vanno al di là dei semplici temi d'esame o degli esercizi standard.

Statistica e Probabilità

Questioni di statistica, calcolo delle probabilità, calcolo combinatorio


Domande e risposte

Ordina per

In evidenza
In evidenza
Più recenti
Più popolari
Con risposta
Con miglior risposta
Senza risposta
matteomezzanotte
Ho trovato questo esercizio su un tema d'esame e non riesco a capirlo, sarei grato se qualcuno mi aiutasse nello svolgimento, grazie "Sia Mn,n(R) lo spazio delle matrici quadrate di ordine n su R. Trova tutte le matrici simili alla matrice nulla 0 appartenente a Mn,n(R) e alla matrice identità In appartenente a Mn,n(R)."

davide.fede1
Salve, non riesco a capire perché non mi esca questo esercizio. Ho la serie $\sum_{n=1}^oo [n^(3)logn-e^(3logn)]/[log(e^n)+n^(5)logn]$ che con le opportune semplificazioni diventa $\sum_{n=1}^oo [n^(3)logn-n^3]/[n+n^(5)logn]$ dopo di ciò applico il criterio del rapporto ma mi esce $1$ , invece dovrebbe uscire un valore $1<$ ovvero serie convergente. Mi potete aiutare ?

SalvatCpo
Data una equazione differenziale lineare... ad esempio del secondo ordine... Le soluzioni quante sono? Una è la soluzione particolare, che, anche presa da sola, risolve l'equazione differenziale, e lo si verifica con una banale sostituzione. L'altra è l'integrale generale, che somma la soluzione particolare alla soluzione dell'omogenea associata. Anch'essa risolve l'equazione differenziale, se si effettua la sostituzione. Ho notato che invece la soluzione dell'omogenea associata, presa da ...
2
29 gen 2018, 19:10

davide.fede1
Salve, riporto una serie che non riesco a svolgere: $\sum_{n=1}^oo (-1)^(n)[(n-1)/n^n]$ . Ho applicato il Criterio di Leibniz, quindi il $\lim_{n \to \infty}(n-1)/n^n$ $=$ $0$ ma poi mi blocco perché non riesco a dimostrare che $a_{n+1}<a_{n}$ . Mi potete aiutare ? Devo dimostrare che la serie converga

frak27
Ciao ragazzi, non capisco come risolvere questo esercizio d'esame degli anni passati: Dimostrare che per ogni numero positivo $n$ e per ogni numero reale positivo $a$ si ha $(1 + a)n ≥ 1 + na$. Soluzione: binomio di Newton. Come si fa tramite il binomio di Newton a dimostrarlo? Di questa tipologia c'è anche quest'altro: Dimostrare che per ogni numero positivo $n$ si ha $2^n ≥ n$. Soluzione: biniomio di Newton.

ric_1992
Esercizio 1 : Un'urna contiene 20 palline colorate, di cui 3 rosse e le altre blu. Estraendo 6 palline in blocco, calcolare la probabilità che tra le 6 palline estratte a) Non ci sia alcuna pallina rossa b) Ci sia esattamente una pallina rossa c) Ci sia almeno una pallina rossa d) Ci siano le tre palline rosse Esercizio 2: Siano A e B due eventi indipendenti con P ( A U B ) = 0,72 e P ( A ) = 0,3. Calcolare P ( B ) Esercizio 3 ( Teorema del Limite centrale ) : Se il 2% dei biscotti ...
4
30 gen 2018, 00:16

AnalisiZero
Ciao, Supponiamo di avere un'equazione differenziale di questo tipo: $ay''+by'+cy=x+senx$. Con $a,b,c in RR$ Ora, in questo caso so che la soluzione è $y=y_0+y_(p1)+y_(p2)$. Dove $y_0$ è l'integrale generale dell'equazione omogenea associata, $y_(p1)$ è l'integrale particolare dell'equazione considerando solo $x$ come termine noto, e $y_(p2)$ l'integrale dell'equazione considerando solo $senx$ come termine noto. Il dubbio potrebbe sembrare ...

pasquale.caputo.9028
Salve a tutti sto preparando l'esame di analisi 2 e sto affrontando il teorema dei moltiplicatori di Lagrange pero non mi e chiaro un passaggio che ha fatto la prof nella dimostrazione del teorema che vi riporto: $f: A sube RR^k rarr RR$ $\barg: A rarrRR^m$ $V={\bar x in A: g(\bar x)= \bar0}$ $L: (\bar x,\barlambda)in AXRR^mrarr f(\barx)-\barlambdag(\barx) in RR$ "Siano $f,g in C_(A)^1$ se $\bar x^{\prime}$ è un punto di max condizionato per f su V( vincolo) e se il rango della matrice Jacobiana di $g(\bar x)$ nei punti di V è m allora $EE\bar lambda^{\prime}inRR^m$ in modo che ...

giulio013
salve ho il seguente limite notevole che non riesco a risolvere: $ limx->0^+ (log(1-7x))/(√1-cosx) $ il risultato dev'essere -7√2 il mio svolgimento: $ limx->0^+ ((log(1-7x))/(√1-cosx) ) * (-7x)/(-7x) = $ $ limx->0^+ ((-7x)/(√1-cosx)) * x^2/x^2 = $ $ limx->0^+ (-7)/(x√2) = $ sostituisco ed esce -7/0 Potreste aiutarmi???
6
29 gen 2018, 22:06

melli13
Sia $f(z)=z^2/(z^2+1)$ a) Determinare la seie di Laurent di $f$ intorno al punto $z=i$ b)Determinare il tipo di singolarità di $f$ all'$oo$ Vorrei una conferma su questo esercizio se è possibile. a)$1/(z+i)=1/(2i+z-i)=1/(2i(1-(-(z-i)/(2i))))=1/(2i)\sum_{n=0}^oo (-1)^n((z-i)/(2i))^n$ $f(z)=1-1/(z^2+1)=1-1/((z-i)(z+i))=$ $=1+\sum_{n=0}^oo (-1)^(n+1)(z-i)^(n-1)/(2i)^(n+1)=1-(z-i)^(-1)/(2i)+1/(2i)+\sum_{n=0}^oo (-1)^(n+1)(z-i)^(n+1)/(2i)^(n+3)=$ $=-(z-i)^(-1)/(2i)+1-i/2+\sum_{n=0}^oo (-1)^(n+1)(z-i)^(n+1)/(2i)^(n+3)$ Mi puzza un po' il fatto del termine $a_0$...non dovrebbe venire $i/2$? Però almeno il fatto che il punto $z=i$ è un polo di ordine 1 mi ...
7
21 gen 2018, 23:51

domino.h4ck
Buonasera, mi ricapita di dover fare meccanica razionale dopo anni e ho un dubbio riguardo le reazioni vincolari; vi spiego il problema: supponiamo di avere un semplice sistema piano con un'asta di lunghezza L vincolata nel suo estremo A nell'origine degli assi (dunque può solo ruotare). La cosa certa è che devo usare la II equazione cardinale della dinamica \(\displaystyle \mathbf{\dot{K}} = \mathbf{M^{(e,a)}} + \mathbf{\Psi^{(e,v)}} \) con la quale ottengo l'equazione pura del moto ...

JackPirri
Ciao, volevo sapere se un minore di ordine a di una matrice è il determinante di una sottomatrice quadrata di ordine a della matrice oppure è la sottomatrice stessa e non il suo determinante.Io sapevo la "prima definizione".Grazie tante.
2
29 gen 2018, 14:08

jack5675
Salve a tutti volevo chiedere delucidazioni circa un esercizio: Assegnato il seguente campo vettoriale v(x,y)= $ (root(3)(x^2y))/3 $ $ (2/x*i,1/y*j) $ devo calcolare i potenziali Prima di poter calcolare i potenziali devo quindi verificare se il campo è conservativo quindi calcolo il rotore del campo che risulta essere nullo adesso devo verificare se il dominio di tale campo è semplicemente connesso il dominio risulta essere $ x!=0, y!=0 $ quindi il campo non è semplicemente connesso tutta ...
1
29 gen 2018, 17:23

isabellabonbon
Buongiorno! Allo scorso esame di Analisi Due mi è stato richiesto di svolgere questo esercizio che ho inserito come allegato. L'esercizio deve essere risolto utilizzando la regola della catena. Qualcuno potrebbe aiutarmi? I miei dubbi stanno soprattuttto nel secondo punto dell'esercizio, dove viene richiesto di sostituire le espressioni trovate. Grazie

m.picariello
Salve a tutti, mi sono appena iscritto su questo forum che ritengo davvero utile, diverse volte le discussioni presenti mi hanno aiutato a capire concetti non molto chiari, questa volta però apro una discussione perché l'argomento che mi interessa non mi sembra sia mai stato trattato. Devo fare l'esame di analisi numerica a giorni, mi sono bloccato sullo studio del "Metodo delle potenze e il Metodo QR", purtroppo dalle slide e dal libro del professore non sono riuscito a capire nulla, ho ...

nic111
Ciao, Come mai questa serie non diverge ? Dove sbaglio? Testo: $\sum_{n=0}^\infty ((2n!)^(1/4))/(n+2)^(n/2)$ Applico il criterio del rapporto $\lim_{n \to \infty} ((2n+1!)^(1/4))/(n+3)^((n+1)/2)* ((n+2)^(n/2))/((2n!)^(1/4)) $ $\lim_{n \to \infty} ((n+2)/(n+3))^(n/2) ((2n+1)^(1/4))/(n+3)^(1/2)$ Quindi rimane solo: $\lim_{n \to \infty} ((n+2)/(n+3))^(n/2) 1/(n^(1/2)*n^(-1/4))$ $\lim_{n \to \infty} ((n+2)/(n+3))^(n/2) 1/n^(1/4)$ ~ $\lim_{n \to \infty}1/n^(1/4)$ La serie diverge anziché convergere come mai ? Grazie in anticipo.
3
29 gen 2018, 17:43

Legolas84
Ciao, sto risolvendo questo problema di Cauchy da fare attraverso trasformazione di Laplace: $\{(y''-4y'+5y = 2t + \delta(t-1)),(y'(0) = 0 | y(0) = 1):}$ Facendo tutti i conti ordinari arrivo ad ottenere questa equazione: $s^2 -4s +5 = 0$ Che ha delta negativo e ha per soluzioni 2+i e 2-i. Ora andando avanti a risolvere il problema il primo fratto semplice che mi viene da risolvere sarebbe così: $1/(s^2-4s+5)$ Che io in modo forse ignorante ho inteso così: $1/((s-(2+i))*(s-(2-i)))$ La domanda è se vado avanti a calcolare per ...
7
28 gen 2018, 13:13

davide.fede1
Salve, riporto un esercizio che ho svolto ma che non mi è uscito. Siano $a>=0$ , $b in RR$ , e si ponga $f(x)=e^(-x)-1$ se $x>=0$ ed $f(x)=x^(2a)|x|+b$ se $a<0$ . Allora $f$ risulta derivabile su $RR$ se e solo se.. e la risposta giusta è $a=b=0$ . Prima di tutto ho scritto $|x|$ come $-x$ poiché la funzione in quel caso è definita per $x<0$ ottenendo quindi ...

laio_a
Salve, ho da risolvere $ z^3/(\bar{z}) = (z^2+6)/|z^2| $ con le coordinate polari ma non riesco a capire come separare il modulo e poi gli argomenti. Non riesco proprio a fare il primo passaggio, sono bloccato proprio. Potrei avere qualche spiegazione per favore??
2
29 gen 2018, 16:52

pasquale.caputo.9028
Salve ragazzi sto preparando l'esame di analisi 2 e andandomi a ristudiare le nozioni di teoria sto trovando un po di difficolta su questa dimostrazione.. In pratica devo dimostrare il teorema che dice che " Se una funzione $f: AsubeRR^n\rightarrow RR$ ammette il vettore gradiente $\nablaf(\bar x)$ per ogni $\bar x in I_(<\bar a>)$ ed è continuo in $\bar a in A_i$, $A_i$ è l'interno di A $\Rightarrow$ che f è differenziabile" Nella dimostrazione la prof ha considerato queste ...