Analisi matematica di base
Quando all'Università i problemi con la matematica tolgono il sonno, cerca aiuto qui
Domande e risposte
Ordina per
In evidenza
Salve, espongo la mia risoluzione del seguente integrale, procedo per parti:
$ int_(-1)^(1) x arcsin(x) dx $
$f(x)=arcsin(x)$ ---------- $g'(x)=x$
$=arcsin x * x^2/2 |_(-1)^(1) - int_(-1)^(1) 1/(sqrt(1-x^2)) * x^2/2$ = $ arcsin (1) * 1/2 - arcsin (-1) * 1/2 - int_(-1)^(1) 1/(x sqrt(1)) * x^2/2$ = $ (arcsin 1)/2 + (arcsin 1)/2 - int_(-1)^(1) x/2$ = $2(arcsin1/2) - (1/2 - 1/2)$ = $2 arcsin1/2$ oso semplificare: $= arcsin 1$
spero in una vostra correzione o conferma (e che non abbia commesso errori).
Grazie Mille!
Buonasera a tutti,
mi trovo di fronte alla seguente equazione differenziale:
$y''+2y'+y=(e^(-x))/x^2$
Provando a risolverla con il classico metodo di "polinomio che moltiplica $e^(lambdax)$" mi viene, come risultato, $ ae^(-x) + bxe^(-x) + (1/2) e^-x$
A quanto pare, invece, dovrebbe venire $ ae^(-x) + bxe^(-x) -e^-x (log(x)+1)$
Qualcuno mi saprebbe illuminare?
Ad un mio collega è venuto il dubbio che non possa applicare tale metodo poichè il grado del "polinomio" sarebbe -2, e questo farebbe di esso un "non ...
L'esercizio mi chiede:
calcolare la circuitazione del campo F= (yz,xz,xy) lungo una curva chiusa. Io ho fatto vedere che la forma differenziale associata al campo è esatta e dunque l'integrale è nullo: ho ragionato bene? Grazie...
vorrei sapere se è corretta questa equazione differenziale:
$ y'' +3y = x + 2cosx $
ho scritto la omogenea associata : $ l^2 +3 =0 $ che ha come soluzione :
y(x)= $ c1 sensqrt(3)x + c2 cossqrt(3)x + v(x) $
v(x) è data dalla somma di x + 2cosx
indicando v1(x) =x
e v2(x) = 2cosx
svolgo prima per v1(x)
allora prendo un polinomio ax+ b perchè è di primo grado poi lo derivo 2 volte e ottendo che $ v1(x)=1/3x + c $
per v2(x) ottengo invece:
$ v2(x)=asenx + bcosx<br />
calcolo la v'2(x)= acosx -bsenx<br />
v''2(x) = -asend - bcosx<br />
alla fine ottengo che : $
2a cosx + 2senx =2cosx
allora metto in ...
[tex]\sum_{n=1}^{+\infty}\frac{1}{n^{\sqrt|x|-1}}[/tex]
Così....a me sembra, di poterla considerare come una serie armonic ageneralizzata con alfa = a
[tex]{n^{\sqrt|x|-1}}[/tex]
Cosa ne pensate?
salve ho:
$\lim_{x \to \0^+}x^lambda logx$
per $lambda=0$ ho $-infty$
per $lambda<0$ ho $-infty$
e per $lambda>0$? ottengo sempre una forma indeterminata, mi date una dritta?
Se trovo una soluzione per essa, direi ancora $-infty$... $x^lambda$ con $lambda>0$ ottengo $+infty$ però questo a quanto so, è un discorso che posso fare solo se $x$ tende a $infty$
alcuni passaggi di questa dimostrazione non mi sono chiari:
HP:
Sia $A$ un aperto di $cc(R)^n$. Sia $f:A sub cc(R)^n rarr cc(R)$, $f in C^1(A)$
TH:
Allora $f$ è differenziabile in ogni $bar(x) in A$
dim:
PER SEMPLICITA' PRENDO $cc(R)^n = cc(R)^2$ e inoltre dimostro la differenziablilità in $bar(x)=(0,0)$
allora...
devo provare che l'incremento
$f(h,k)-f(0,0) =$ $del_x f(0,0)h + del_y f(0,0)k + R(h,k)$
dove $R(h,k)$ è il resto tale che ...
un'equazione del tipo
y''-y'+y=4+senx
Dopo aver trovato la soluzione generale,per trovare quella particolare(con il metodo della somiglianza) io considero dapprima y''-y'+y=4 e cerco un polinomio di grado zero (una costante) che appunto viene uguale a 4 e poi y''-y+y=sen x e trovo la soluzione particolare riferita a sen x,infine sommo e trovo la soluzione generale.
E' un ragionamento giusto?
Salve,
l'esercizio chiede di determinare massimi e minimi di questa funzione: $ x^2y+xy^2-xy $ su l'insieme di definizione:T= $ {(x,y ) in RR ^2 , x geq 0 , y geq 0 ,x+yleq 1 } $ .
La prof. ha determinato i punti critci con le derivate prime e quindi con il gradiente ed escono i seguenti punti critici : (0,0),(1,0),(0,1),(1/3,1/3);
a questo punto la prof.saltando molti passaggi per mancanza di tempo(ed è per questo che mi son perso) ha determinato come minimo f(1/3,1/3)=-1/27
e poi è andata a calcolare i valori sugli ...
Salve,
quando ho il classico $oo/oo$ mi hanno insegnato che si vede quello che è di grado maggiore. Io mi sono fatto una mini scaletta, magari mi potete dire se ho ragione o meno. Vi scrivo le funzioni da quelle che tendono piu velocemente all'infinito fino a quelle che tendono di meno:
$x^x$
$a!$ fattoriale
$a^x$ esponenziale
$x^a$ potenza
$x$
$x^1/a$ radice
Unico dubbio, il logaritmo dove me lo ...
[tex]\sqrt{x^3-|x^2-x|}[/tex]
Mi si chiede di studiare la monotonia, la derivabilità e la natura dei punti in cui non è derivabile.
Intanto, non sono convinto del mio dominio....a me è venuto [tex][1,+\infty[[/tex]
Cioè l'argomento deve essere maggiore o uguale a 0.
Quindi ho fatto un sistema tra [tex]x^3-x^2+x[/tex] e [tex]x^2-x\geq0[/tex]
Prima di andare avanti, vorrei accertarmi che sia giusto questo.
Buongiorno a tutti! Nuova giornata, nuovo dubbio
L'esercizio incriminato è questo:
Allora, ho iniziato così:
$\lim_{n \to \infty}(e^(-2n)log(2n))/(2e^(2n)sqrt(1+logn/(4e^(4n)))-2e^(2n))$
Da qui, ho usato McLaurin per $sqrt(1+logn/(4e^(4n)))$ ottenendo:
$\lim_{n \to \infty}(e^(-2n)log(2n))/(2e^(2n)+logn/(4e^(2n))-2e^(2n)$
Fino ad avere $\lim_{n \to \infty}4log(2n)/logn$ ... e qui mi fermo! Il risultato dovrebbe essere $4$, ma io ora non so più cosa fare!
Cosa ho sbagliato? :\
Grazie in anticipo a chiunque mi potrà dare una mano
Andrea ~
Edit: mi sorge il dubbio.. non è che ...
è possibile che un campo scalare $f:A sube cc(R)^n rarr cc(R) $ sia continuo in un punto $bar(x)$ ma non differenziabile nello stesso punto?
se sì mi fate un esempio?
se no mi spiegate perchè?
insomma:
differenziabilità in un punto $rArr$ continuità in quel punto
ma vale l'implicazione contraria
continuità in un punto $rArr$ differenziabilitàin quel punto???
sono giorni che provo ma non riesco a capire proprio il procedimento da usare
cambiamento di variabili????si,ma polari non riesco ad usarle qui....
mi sto scervellando da giorni!!!
$ int int_(D) (x*y^2)/(1+x)dx dy $
con y= $ sqrt(x) $
e y=4(x-1)
potrei cambiare in coordinate u e v,ma le condizioni sono una parabola e una retta.
Non saprei proprio!!!!
Salve,
Il prof ha dato per scontato un passaggio semplice che io non ho capito:
$f_1 (x) = \frac{1}{|x^4 - 1|}$
è equivalente a $-f_2$ :
$f_2 (x) = \frac{-1}{(x^2+1) |x^2 - 1|}$
Qualcuno potrebbe spiegarmi l'operazione che ha fatto? e dirmi in generale quali operazioni
posso fare con il modulo?
Grazie in anticipo.
[tex]x\log(x^2+y^2+1)[/tex]
E' differenziabile nel punto (0,0)?
La funzione dovrebbe valere 0 lì, e le derivate parziali sono entrambe uguali a 0, calcolando il limite per vedere la differenziabilità ho considerato la restrizione in cui h=k con k>0 e ottengo questo limite:
[tex]\frac{k^2}{k\sqrt{2}}[/tex] che dovrebbe fare 0.
Ma questo basta per dire che è differenziabile?
COme faccio altrimenti a vedere che non tutte le restrizione hanno limite uguale a 0, se così è?
salve ho questa equazione differenziale:
$ y''' - 5y' + 6y = e^x $
l'integrale della omogenea associata è:
$ y(x) = c1 e^(2x) + c2 e^(3x) $
ora se P(l(lambda)) =P(2)=0 e lo è
allora v(x) = bx e^2x
è giusto???
poi mi calcolo e due derivate e le sostituisco nell'equazione omogenea associata così ottengo il coefficiente b giusto??
Salve a tutti!
Tra poco ho un esame di analisi II e ho pensato che qualcuno qui potesse aiutarmi a capire alcune cose poco chiare,
per esempio la dimostrazione di questo teorema:
HP:
sia $ f:Asubecc(R)^n rarr cc(R) $ un campo scalare differenziabile in $ bar(x) in Int(A) $
cioè $ f(bar(x)+vec h)-f(bar(x))= df(vec h)+ o(||vec h||) $ dove per $df$ intendo il differenziale
allora si ha:
TH:
i) $ f $ continua in $ bar(x) $
ii) $ EE $ tutte le derivate parziali
iii) ...
Aiuto equazioni!!
Miglior risposta
Come si trovano le soluzioni di questa equazione?
4*(x^4)+(x^2)-1=0
Aggiunto 13 minuti più tardi:
Ah ah ah, in genere le sò fare ma in questo caso no, mi aiuti?
ps. il problema che stavo eseguendo non era la risoluzione dell'equazione e basta ma stavo risolvendo un ottimizzazione a estremi vincolati e come risultato finale mi veniva questa equazione che non sò risolvere!! "pecche delle superiori"
Aggiunto 41 minuti più tardi:
Cavolo è vero!!! Ecco come si facevano!! Non mi ricordavo che ...