Analisi matematica di base
Quando all'Università i problemi con la matematica tolgono il sonno, cerca aiuto qui
Domande e risposte
Ordina per
In evidenza

nonostante sia stato a ricevimento dal professore, non sono riuscito a capire come si svolge il seguente esercizio:
L'insieme [tex]A = (y,z) \in R^2 | 0 \le y \le -z^2+1[/tex] ruotando attorno all asse z descive un volume [tex]C \subset R^3[/tex]. Calcolare [tex]\int_{C} x^2 dxdydz[/tex]
Non so propro da dove iniziare, in giro ho trovato un esercizio simile, questo:
Il dominio [tex]A=(y,z) \in R^2 | t \le 0, 0 \le z \le 1-y^2[/tex] descrive un volume [tex]C \subset R^3[/tex] ruotando ...

la funzione è questa:
$y=(sin^(2)x)/(cosx(2+cosx))$
ho provato a far la derivata prima per studiare la monotonia ... ma dopo aver fatto la derivata non riesco a raccoglier nessun fattore per semplificare qualcosa, perchè mi viene una roba assurda..

Salve a tutti,
avrei bisogno di una mano con un integrale.
Vorrei sapere se si può dire che l'integrale
$ int_(0)^(oo ) dx/(1-f(x)) $
esiste ed è finito pur non conoscendo la f(x) nel dettaglio.
f(x) soddisfa queste tre ipotesi:
f(0)=0;
f continua;
f crescente;
ho provato a cercare su internet ma non ho molta confidenza con la sommabilità e i criteri per stabilirla.
grazie mille, sono disponibile per chiarimenti,
ursus

Salve ho da studiare la sommabilità in senso generalizzato in $[0,1]$ della funzione:
$f(x) = sqrt(x)/(sin^alpha(x))$ con $alpha in RR$
Sapendo che per trovare la sommabilità devo studiare l'integrabilità assoluta della funzione, essendo però un intervallo chiuso non so come approcciarmi al problema.
Come dovrei considerare i due estremi nel calcolo della convergenza o divergenza del limite?

Salve a tutti...
qualcuno potrebbe dirmi come si riesce a calcolare in generale l'area di un segmento circolare tramite gli integrali doppi... non riesco davvero...
porteste aiutarmi?
graize...

Ciao a tutti,
mi e' stato assegnato un problema che dice: Calcolare il flusso del campo vettoriale
$ F(x,y,z)=((2x)/(x^2+y^2))vec i +((3x)/(x^2+y^2))vec j + vec k $
attraverso la superficie di rappresentazione parametrica
$ r(u,v)=ucosv vec i+usinv vec j+u^2vec k $ con $ u in [0,1/2 ] , v in [0.pi/2 ] $
orientata in modo che il vettore normale punti verso il basso.
Per risolvere il problema ho risolto l'integrale di superficie in forma differenziale quadratica cioe' $ int_(S)^() (v xx n) d sigma $ quindi sono passato all'integrale sul dominio di base B(u,v) nella forma ...


Ciao a tutti, devo risolvere il problema:
$Delta u(x,y)=e^(x^2+y^2)$ nella circonferenza di raggio R
$u(x,y)=y$ sul bordo
Sono subito passato a coordinate polari:
$u_(rr)+1/r u_r + 1/(r^2) u_(thetatheta) = e^(r^2)<br />
$u(r,theta)=rsintheta$<br />
<br />
ma non riesco ad andare avanti. Vedendo che forma ha il laplaciano, ho pensato di separare le variabili $u(r,theta)=v(r)w(theta)$ e mettere $w(theta)=1$ e ottengo quindi: $v_(rr)+1/r v_r = e^(r^2)$. La soluzione dell'omogenea è $v(r)=k log r + c$, ma variando le costanti non ne trovo una particolare, e neanche provando una soluzione a occhio tipo $f(r)e^(r^2)$. Che si può fare??
Grazie

$intx/(8+x)^7$
si risolve per parti oppure posso fare in un altro modo?come?
GRAZIE

Ciao ragazzi ho da verificare la convergenza di questo integrale
$\int_{-1}^{1} (x+1)sqrt((1-x^2)) dx$
Pensavo di usare il confronto asintotico e, come suggerisce il mio libro di testo, quindi di confrontarlo con $|x-c|^alpha$ cioè:
$lim_(x->c)(x+1)sqrt((1-x^2))|x-c|^alpha$
Sperando di non aver scritto troppi errori avrei le seguenti domande:
1) quando calcolo il limite lo faccio sempre con $x$ che tende a $c$ (senza mettere un valore preciso)?
2) per risolvere quel limite posso sostituire la ...

Voglio dimostrare che [tex]e^x = \lim_{N\to \infty}(1+\frac{x}{N})^N[/tex]
Inizialmente avevo provato a sviluppare in serie l'esponenziale [tex]\lim_{N\to \infty}\sum_{n=0}^{N} \frac{x^n}{n!} = \lim_{N\to \infty} \left( \prod_{i=1}^{N} \left( \sum_{n_i=0}^{N} \frac{x^{n_i}}{n_i!}\right)\right)^{\frac{1}{N}}[/tex]
ma poi mi sono perso in tutte le produttorie e sommatorie e sono arrivato ad un risultato che mi pareva troppo incasinato...
A proposito esiste una dimostrazione che parte da ...

Sia $f$ definita da:
$f(x)=sum_{n=0}^(+oo) (n+1)x^n$
stabilire la convergenza di essa e si calcoli $f'(0)$
Stabilito che esso è:
$f(x)=sum_{n=0}^(+oo) (C_n)x^n$ con C_n = Successione [No Cerchio di Convergenza]
trovare $lim_(n->+oo) root(n)|(n+1)|$ che equivale a $lim_(n->+oo) |n+1|/(|n+1+1|)$ ----> $lim_(n->+oo) |C_n|/(|C_n+1|)$.
Il limite tende a $1$, a $L$ quindi.
$R$=Raggio di Convergenza, equivale a $1/(lim_(n->+oo) root(n)|(n+1)|)$ e vedremo che il risultato è sempre $1$, per ...

$x^lambda log(x)$
devo studiare il grafico al variare di lambda!
ditemi per favore i passaggi che devo fare! $lambda$ mi mette grande panico! :S
scusate ragazzi ma sono pieno di compiti..
vorrei capire come studiare la derivata seconda di $ln(1+sen(x))+1/2 x^2$
questa è $3/x^4-(sen(x))/(sen(x)+1)-(cos(x)^2)/(sen(x)+1)^2$
la domanda dell'esercizio è: Si stabilisca, giustificando la risposta, se 0 e un punto di flesso per f e, in caso affermativo, se ne indichi
il tipo.
P.S.: per i più generosi ci sarebbe anche questa: Si determini, giustificando la risposta, $ord _0 f
GRAZIE MILLE!

Salve ho provato un pò di metodi per risolvere questa equ. diff. ma non sono arrivato a niente di fatto.
Avete qualche suggeriemento ??
Grazie
$ Y'=((x+y)^2-4)/(x+y)-1 $

[tex]\lim_{n \to \infty }\frac{3^nn!}{n^n}[/tex]
Ho provato a risolverla così:
[tex]\lim_{n \to \infty }\frac{e^{nlog3}e^{log(n!)}}{e^{nlogn}}[/tex]
E avrei:
[tex]\lim_{n \to \infty }e^{nlog3+log(n!)-nlog(n)}[/tex]
Ora suppongo debba mettere in evidenza, però non capisco cosa, perchè non sono riuscito ad arrivare ad un risultato corretto....

Salve forum,
una funzione reale ad una variabile, f(x), e' detta pari (simmetrica rispetto all' asse y) se:
f(x) = f(-x)
Come si esplora la simmetria di una funzione f(x,y) a due variabili? Quante simmetrie ci possono essere? Come si trovano?
Ci sono forse infinite simmetrie e dipende da quale retta nel piano x-y si vuole definire la simmetria.....
Si possono calcolare le simmetrie attraverso qualche calcolo combinatorio delle variabili indipendenti x e y?
La semisfera, ...

Ho la seguente serie:
$\sum_{n=1}^oo (logn/(n * 2^n)) * (x - 1)^n $
Per trovare il raggio di convergenza ho provato ad applicare il teorema di D'Alembert.
$ lim_(n -> oo) |a_(n+1)/a_n| = λ$ dove il raggio di convergenza $r=1/λ$
(Comunque, ho avuto difficoltà anche usando Cauchy)
Quindi il limite diventa:
$ lim_(n -> oo) |(log(n + 1) * n * 2^n)/ ((n + 1) * 2^(n+1) * logn )| $
ed ho ottenuto:
$ lim_(n -> oo) 1/2 * (log(n + 1) * n)/ ((n + 1) * logn ) $
che ho pensato di scrivere sotto quest'altra forma:
$ lim_(n -> oo) 1/2 * ((n+1)/n)*(log(n + 1)/ (logn )) $
e cioè:
$ lim_(n -> oo) 1/2 *(log(n + 1)/ (logn )) $
Mi sembra di non aver commesso errori fin'ora... ma mi ...
Si ha da studiare il carattere della seguente serie: $\sum_{n=1}^infty n^2/3^n$
la serie è una serie a termini positivi: studiamola con il corollario del criterio del rapporto ed abbiamo.
$[a_(n+1)]/[a_(n)]= [(n+1)^2]/[3^(n+1)]*(3^n)/(n^2)=1/3[(n+1)/(n)]^2=1/3 (1+1/n)^2 ; $
ancora non ho preso "praticità" ad operare con le serie...e non ho chiari i passaggi ...penso algebrici degli ultimi due "punti"....
potreste dirmi che semplificazioni si son adottate?
thankx
esiste la funzione inversa di $y=3x+lnx?$ il dubbio mi viene perchè la x è sia in forma lineare che logaritmica