Analisi matematica di base
Quando all'Università i problemi con la matematica tolgono il sonno, cerca aiuto qui
Domande e risposte
Ordina per
In evidenza

CIao,
vorrei chierire graficamente il perché dell'affermazione del mio libro: "Il vettoreγ′(t) è chiamato vettore tangente alla curva in γ(t) ed è tangente alla curva in quel punto"
Ho appena studiato il limite e la derivazione in più variabili e valori in $R^n$ e ho visto che il limite corrisponde al limite componende per componente (quindi per la curva $dotx=(x'(t),y'(t),z'(t))$ vista come funzione in una variabile a valori in R3), però non capisco come si dimostri che è tangente a ...

Ciao,
se $f$ è una funzione continua in $[a,b]$ e derivabile in $(a,b)$, scrivere:
$f'(x)\geq 0, \forall x\in(a,b)$ con $f'$ non si annulla identicamente in alcun intervallo contenuto in $(a,b)$
è la stessa cosa affermare questo?
$f'(x)>0, \forall x\in(a,b)$
Questo dubbio scaturisce dalla lettura del libro "Calcolo" di Marcellini/Sbordone che presenta il teorema del Criterio di Monotonia stretta usando la doppia implicazione
"Sia $f$ una ...

ciao ragazzi, forse ho qualche lacuna sulle disequazioni goniometriche...tuttavia non riesco a trovare il mio errore in questo insieme
$E={0<=x;x^2+y^2<=2:y<=0;(x^2+y^2)^2<=4(x^2-y^2)}$ che reso in coordinate polari diventa
$E'={rho*cos(theta)>=0;0<=rho<=sqrt(2);rho*sin(theta)<=0;0<=rho<=2sqrt(cos(2theta))}$
da $rho*cos(theta)>=0;rho*sin(theta)<=0$ trovo che $ -pi/2<=theta<=0$
da $0<=rho<=2sqrt(cos(2theta))$ impongo che $cos(2theta)>=0$ e dunque $-pi/4<=theta<=pi/4$
da $0<=rho<=sqrt(2);0<=rho<=2sqrt(cos(2theta))$ provo a vedere quando $2sqrt(cos(2theta))<=sqrt(2)$ e trovo che $pi/6<=theta<=5/6pi$
facendo il sistema (su una circonferenza goniometrica) trovo ...

Come mai l'equazione $ x^2 + y^2 -1 = 0 $ nell'intorno del punto di coordinate (0,1) è risolvibile rispetto a y (cioè si può ricavare y in funzione di x ) ma non rispetto a x ( cioè non si può ricavare x in funzione di y ) ?
Nell'intorno del punto (1,0) succede invece il contrario ( x è esplicitabile come funzione di y , ma non viceversa).
Grazie

Ciao ragazzi ho pensato di poter calcolare l'area della sfera nel seguente modo, può andare bene concettualmente?
prendo la sfera di raggio R ed immagino di dividerla a fette piccolissime di spessore $ Rdalpha $ (con $ alpha $ un angolo piccolissimo) e raggio $ R*sen(alpha) $. Dato che parlo di piccole "dimensioni" posso approssimare queste fette a cilindri e calcolare la loro area come quella di un cilindro. poi integro l'area infinitesima da zero a pigreco.

Salve a tutti, avrei bisogno di una mano per la risoluzione di un esercizio, mi si chiedere di calcolare la derivata 22-esima in x =1 della seguente funzione:
$f(x)=(-1 + x)/(-2 - x + x^2)$
il prof ci ha spiegato un metodo che consiste nell'effettuare operazioni sulla funzione (sommare e sottrarre lo
stesso valore) per ricondursi al caso della serie geometrica per ricavare poi la derivata con:
$f^(n)(x_0) = a_n*n!$
Mi sono fermato quasi all'inizio, non so come agire e modificare la f(x) per fargli assume ...

Buongiorno,
volevo chiedervi l'aiuto per risolvere il seguente problema: io devo dimostrare che la funzione $f :$ $RR^2$ $rarr$ $RR$ definita con la legge:
$ f(x,y) = xy * e^(2x)$
Non ammette estremi.
Ho fatto le derivate prime parziali e mi viene:
$f'x(x,y) = y * e^(2x) * (1+2x)$
$f'y(x,y) = x * e^(2x)$
Ora il docente nelle slide dice che "poiché la funzione esponenziale è sempre strettamente positiva" (credo intenda dire che $x*e^(2x)$ è sempre ...

Studiando fisica mi sono accordo dell'uso di una derivata detta "totale": https://it.wikipedia.org/wiki/Derivata_ ... l_continuo
Mi sono accorto a livello di formalismo essere simile a una derivata direzionale classica e discendere da una derivazione composta. Incuriosito ho cercato di approfondire il legame anche qui sul forum e no trovato questo:
"Fioravante Patrone":[quote="richard84"]ciao!nn capisco bene la differenza fra derivata totale e derivata direzionale....
la direzionale si calcola nella direzione di un ...

$max$ e $min$ assoluti di $f(x,y)=x^4+y^4-8(x^2+y^2)$ su $E={x^2+y^2=9}$
ho sostituito il vincolo $E$ in $f(x,y)$ ottenendo $f(x,y)=x^4+y^4-72$ e poi usando i moltiplicatori ottengo
$L(x,y,lambda)=x^4+y^4-72+lambda*(x^2+y^2-9)$ e calcolando le derivate parziali di $L$ ottengo il sistema
$\{(4x^3+2lambda*x=0),(4y^3+2lambda*y=0),(x^2+y^2=9):}$
sommando le prime due equazioni ottengo e usando la scomposizione di $a^3+b^3$ ottengo
$(x+y)*(x^2-xy+y^2-lambda)=0$ da cui però non riesco a ricava i punti ...
Buongiorno, ho questo esercizio sui massimi e minimi vincolati:
$ A={(x, y, z) in R^3 | x^2+y^2+z^2<=4, z>=x+y}, f(x,y,z)=x^2-yz$
devo trovare massimi e minimi. Non riesco a capire però il secondo vincolo. Per il primo è garantita l'esistenza del massimo e del minimo assoluto, ma il secondo cosa mi rappresenta? Posso trattarlo normalmente tramite i moltiplicatori di Lagrange? Grazie

Ciaoo a tutti,
Avrei bisogno di un aiuto con questa equazione differenziale
$$y'(x) =sin(y(x)+x^2) $$
con la condizione iniziale $y(0)=0$
Devo dimostrare che $y(x)>0$ se $x\in(0,\sqrt(\pi))$ non so proprio come fare! Avete qualche consiglio anche su possibili testi da consultare?
Salve a tutti,
da diversi giorni sono incastrato nella dimostrazione di questo esempio che il libro svolge in modo molto tranquillo ma, purtroppo per me, omettendo dei passaggi fondamentali.
Trovare le radici seconde della seguente equazione:
$|z|^2z^2=i$
Inizio ponendo l'equazione come $z=Re^(i\varphi)$ e sapendo che $|z|^2=R^2$, l'equazione diventa $R^2(R^2e^(i\varphi))=R^4e^(i2\varphi)=i$.
Trovo il modulo: $|z|=R=1$. E il suo argomento: $2\varphi=\pi/2+2k\pi$ che semplificando diventa ...

Ho la funzione:
$x^2(x^2-y^2)$, mi chiede i punti critici, che ho trovato e sono $(0,k)$ per i quali il determinante dell’hessiana è nullo.
Ho deciso di studiare il segno della funzione in un intorno di tali punti:
Per $k!=0$ trovi che sono punti di massimo e per $k=0$, quindi l’origine, il testo dice che è punto di sella, come posso dimostrarlo?
Grazie
Ciao ragazzi qualcuno sa risolvere questo esercizio? Grazie in anticipo.
Sia Ω la regione nel semipiano x > 0 compresa tra l’iperbole di equazione $x^2 −y^2=7$ e la circonferenza di equazione $x^2+y^2=25$
Descrivi la regione Ω sia come dominio semplice rispetto all’asse y, e sia
come dominio semplice rispetto all’asse x, specificando nei due casi quali funzioni
descrivono la sua frontiera e su quali intervalli esse sono definite.

sto trovando difficoltà a risolvere il seguente problema in quanto non capisco come ragionare per eliminare il modulo:
$\{(y'=|y+x|),(y(0)=alpha):}$
ho provato a ragionare in questo modo:
se $alpha>=0$ allora risolvo
$\{(y'=y+x),(y(0)=alpha):}$
se $alpha<0$ allora risolvo
$\{(y'=-(y+x)),(y(0)=alpha):}$
dunque risolvendo separatamente i due PC troverò le soluzioni in base al segno di $alpha$.
è corretto? oppure sono fuori strada?
grazie

Salve a tutti. Riguardo al teorema del limite delle funzioni composte, ho voluto analizzare il limite della seguente funzione:
$ lim_(x -> 0+)log(x*sin(1/x)) $
Dunque, constatato che $ y=f(x)=x*sin(1/x) $ e $ g(y)=log(y) $ , teoricamente io non posso applicare il teorema del limite della funzione composta, per 2 motivi:
- $ g(y) $ non è continua in 0 ( $ lim_(x ->0+) f(x) $ ), non essendo neppure definita per tale valore
-Non esiste un intorno bucato di 0 per cui $ f(x)!=0 $ per ogni x ...

Avendo questo insieme
$X={n/(n+1) : n in NN}$ come faccio a dimostrare che il maggiorante é 1?
Io ho pensato di calcolare il limite....poi ho visto ancge questa dimostrazione:
vediamo se esistono dei numeri $k in RR$ tali che $n/(n+1) <=k in RR AA n in NN$
Alla fine si arriva a
se $ k<1$ si ha $n<= k/(1-k) AA n in NN$
Questa condizione non puó essere vera perché contraddice il fatto che $NN$ non é superiormente limitato.
Qualcuno mi puó spiegare meglio

Salve a tutti è da un po che non mi cimento
avrei un "problemino"
dunque scrivo l'esercizio:
$[s=(x,y,z) in R^3 : 9x^2 + y^2 <= 9, z = x-y ]$
determinare una superficie $\sigma$ che abbia $S$ come supporto, e calcolare
$\int int_\sigma f dA$
con $f : RR^3 \to RR$ definita da $f(x,y,z) = z$
dunque pensavo di risolvere l'esercizio parametrizzando la superficie $S$ come
$\{(x=cos (t)), (y=9 sen(t)):}$
però sostituendo nell'integrale doppio ho .
$\int int_\sigma (cos (t)- 9 sen(t)) * sqrt((cos^2x) + (81 sen x)) dA$
ma non so se il procedimento è ...

Ad esempio disegnare il grafico della funzione:
$y = \text{sup}{-t^3 - t} $
ove $t \in [x, +\infty) $
Io ho disegnato alcuni punti , spero siano giusti: per ogni insieme ${-t^3 - t} $
considero l'estremo superiore (che dovrebbe coincidere con il massimo in quanto appartiene all'insieme stesso) : ottengo lo stesso grafico della funzione $y = -x^3 - x $
x y
-2 10
-1 2
0 0
1 -2
2 -10
3 -30
Grazie

ho un dubbio a riguardo del seguente esercizio
data $f(x,y)=e^x+ye^(y^2)+x^2y-1$ verificare che essa soddisfa le ipotesi del teorema di Dini in $P=(0,0)$ ( e fino a qui ho fatto) e determinare il piano tangente in $0$.
ora qui non ho capito come trovarlo: posso usare lo sviluppo di Taylor oppure vi è una formula diversa?
io avrei fatto cosi:
$z-f(0,0)$ $=$ $((delf)/(delx)(0,0))(x-0)$ $+$ $((delf)/(dely)(0,0))(y-0)$
grazie