Matematica - Superiori

La scienza dei numeri, dei cerchietti e delle imprecazioni

Domande e risposte

Ordina per

In evidenza
In evidenza
Più recenti
Più popolari
Con risposta
Con miglior risposta
Senza risposta
mark930
Come si risolve questa equazione esponenziale? [math]5^{2x}+\frac{5^{x+1}}{(5)(3^x)}=\frac{2}{3^{2x}}[/math]
5
19 feb 2010, 17:41

Useròilnome1
Salve, vi scrivo perchè sono in una situazione di stallo nel il risolvere questa disequazione: $ x-sqrt(2) < x(sqrt(2)-x) $ sono fermo nel capire come sia possibile trasformare la radice del Delta, ovvero $ sqrt(2sqrt(2) + 3 ) $ in $ sqrt(2) + 1 ) $ La disequazione è banale, Molti software CAS mi dicono che l'uguaglianza è giusta (se provo ad utilizzare questa $ sqrt(2) + 1 ) $ versione, arrivo infatti le soluzioni del libro) , alcuni mi forniscono strane formule per giustificarla (come Derive, ...
5
18 feb 2010, 22:30

principessa-.-
mi potete risolvere questo esercizio? è facile, ma mi trovo un pò in difficoltà con la scelta dell'esponente. [math]( x^4-3y)^3 [/math]
2
19 feb 2010, 17:43

gracy91
sapete dirmi qulìè la derivata di 1/radice quadrata di 1-x^2 ???
3
19 feb 2010, 16:36

cecco....
devo risolvere la seguente disequazione: 2sen al quadrato di x-(2-radice di 3)senx-radice di 3 il tutto minore o uguale a 0 la risoluzione secondo me dovrebbe essere questa: pongo senx=t e la risolvo come una semplice equazione di secondo grado ma nn mi esce...grazie
3
19 feb 2010, 15:59

Nausicaa912
$\lim_{x \to \infty}(x-2)e^(-2x)$ come si fa questo limite..? non riesco ad uscirmene
9
18 feb 2010, 19:26

vale9319
Ciao... non riesco a "decifrare" le ultime righe della spiegazione dei fasci. Ho un fascio e due generatrici a e b.-----> a+kb=0 a appartiene al fascio. b non appartiene. per k=0 ottengo la generatrice a mentre non posso ottenere la generatrice b perchè 1/k(a)+b=0 a non si annulla per nessun valore di k. Ora...è corretto dire che le rette del fascio tendono alla generatrice b per valore molto piccoli di 1/k, quindi per un k tendente all'infinto? Riuscireste a spiegarmi questa ...
1
18 feb 2010, 22:20

Lady9Oscar1
Studiare l'equazione di equazione y= 3-x / x+1 . 1) Determinare le intersezioni della curva con la retta y=4x+h 2)Trovare il valore di h per cui la retta è tangente alla curva e determinare le coordinate del punto di contatto A di ordinata positiva. 3)Scrivere l'equazione della parabola del tipo y=ax^2 +bx +c tangente alla curva nel punto A. 4)Calcolare le coordinate dell'ulteriore punto B di intersezione delle due curve. GRAZIE
7
15 feb 2010, 16:05

Lady9Oscar1
In un semicherchio di diametro AB=2r è inserito un triangolo isoscele OCD , con il vertice nel centro O e con la base CD parallela aò diametro AB. Si faccia ruotare di un giro completo la figura attorno ad AB e quindi si studi la variazione del solido generato dal triangolo OCD.(porre OH=x) CIOE' LA VARIAZIONE DOVREBBE ESSERE LA DIFFEREZA TRA IL VOLUME DEL CILINDRO CC'DD' E 2 VOLTE IL VOLUME DEI CONO COC' . E POI DEVO STUDIARE y=V (ossia la variazione). HO ALLEGATO UNA PROBABILE ...
4
17 feb 2010, 18:26

scratch17
Problemi geometria 1. Fra tutti i cilindri inscritti in una medesima sfera di raggio di misura r, qual'è quello di volume massimo? [quello il cui ragggio di base misura= r (radical6) fratto 3] questo risultato è razionalizzato. Dai calcoli si dovrebbe ottenere [r(radice di (2/3))] 2. Fra tutti i cilindri che hanno lo stesso volume di misura V, qual'è quello inscritto nella sfera più piccola? [quello il cui ragggio di base misura= radice cubica V fratto(pigreco per radical2)] 3. ...
1
18 feb 2010, 14:53

Zella92
Come si risolvono? -Ti trovi su una spiaggi e vuoi calcolare l'altezza di un isolotto scoglioso .Scegli due punti A e B allineati con l isolotto e distanti tra loro 20m . Con un teodolite misuri gli angoli DAC= 28° DBC=20° (D è un punto alla base dell isolotto , C è un punto alla sua sommità) .Quanto risulta alto? -Una piazza ha la forma di un quadrilatero convesso i cui angoli misurano : A= 70° B=130° C=40° D=120° .Se il lato AB è lungo 40m BC 90m quanto misura la superficie della ...
1
18 feb 2010, 17:01

elbarto1993
Per quale valore di "k" la parabola y=2x^2+x+k è tangente alla retta x-y-3=0 ?
3
18 feb 2010, 19:56

andrearupy
Salve a tutti... Sono bloccato su questo esercizio... sapete aiutarmi ? devo dimostrare che: $1*1! + 2*2! + ... + k*k! = (k+1)!-1 $ sostituendo a k un numero qualsiasi possiamo vedere che l'equazione è verificata. Tuttavia non riesco a dimostrarla. Riesco solo a dire banalmente che $(k-1)! = (k+1)*k!$ e che $k*k! = k!*(k-1+1)! = ((k+1)*k!) - k! = (k+1)! - k! $ ma comunque non sono arrivato a nessuna conclusione! Grazie in anticipo per chi riuscirà o proverà ad aiutarmi!
7
28 gen 2010, 13:55

Karinn!
Sistemi letterali interi e fratti come si fanno con Cramer? Cosa bisogna mettere prima nella Dx e nella Dy nei sistemi letterali e in quelli fratti? L'ordine è lo stesso?
2
18 feb 2010, 17:03

marcotao1
Ciao a tutti! Ragazzi ho un problema che mi sembra davvero stupido, ma non riesco a risolverlo. Studiando la funzione [tex]f(x) = log_{5} \left[\left(\displaystyle \frac{1}{2}\right)^{\sqrt{3} + \tan x^2} - 1\right][/tex] nella ricerca del dominio mi trovo davanti ad una disequazione apparentemente facile: [tex]\tan x^2 + 3^{\frac{1}{2}} < 0[/tex] quindi [tex]\displaystyle \frac{\pi}{2} + k\pi < x^2 < \frac{2}{3} \pi + k\pi[/tex] e quindi [tex]\displaystyle \left(\frac{\pi}{2} + ...
13
17 feb 2010, 15:51

top secret
Anche questo problema non mi è stato spiegato, ed ancora una volta credo di avere intuito il procedimento, ma non so metterlo in pratica, ammesso e non concesso che questo sia corretto... Il problema... Nell'equazione $x^2/a^2+y^2/(a^2-4)=1$ si trovi il valore di $a^2$ in modo che l'ellisse passi per P($-5/8$;$(3/8)sqrt15$). Determinare l'area del rettangolo inscritto nell' elisse, con un lato appartenente alla retta di equazione y=1. La mia ipotetica ...
5
17 feb 2010, 18:55

goalkeeper95
ciao a tutti non riesco a venire a capo di questo problema, potresta provarlo a risolverlo? grazie a tutti Problema_1 Lo schiaccianoci rappresentato in figura ha lunghezza 153mm. Il centro dell’alloggiamento più vicino al fulcro, utilizzato per schiacciare le nocciole, dista 13×10-3m dal fulcro, mentre il centro dell’alloggiamento per schiacciare le noci dista dal fulcro 4,2cm. Si supponga che impugnando lo schiaccianoci per i manici si applichi la forza per schiacciare una noce o una ...
3
18 feb 2010, 17:02

top secret
Buon pomeriggio ragazzi, scusate per il disturbo, ma queste cose mi vengono assegnate come compito er casa senza una minima spiegazione... la prima parte del problema, che ho omesso, l'ho risolta... ma..... Nell'equazione $x^2/(25/4)+y^2/(9/4)=1$ Determinare l'area del rettangolo inscritto nell' elisse, con un lato appartenente alla retta di equazione y=1. Potete aiutarmi per favore? Grazie in anticipo...
1
18 feb 2010, 17:56

luca.piacentini2
In un parellelogrammo ABCD, siano E ed F rispettivamente i punti medi dei lati opposti AB e CD. Dimostrare che le rette AF ed EC dividono la diagonale BD in tre parti isometriche. Vi prego di aiutarmi. Non so come partire. Vi ringrazio in anticipo.
2
18 feb 2010, 15:17

hyp3rfox
Ecco il mio problema. Devo razionalizzare una frazione, ma arrivati ad un certo punto mi blocco. La frazione è questa: $sqrt(6)-sqrt(5)//sqrt(3)+sqrt(2)$ So che bisogna svolgerla così: $sqrt(6)-sqrt(5)//sqrt(3)+sqrt(2)=sqrt(6)-sqrt(5)//sqrt(3)+sqrt(2)* sqrt(3)-sqrt(2)//sqrt(3)-sqrt(2)$ Ma arrivati qua mi blocco. Cioè il denominatore dovrebbe essere quindi: $3-2$ ; mentre il numeratore: $sqrt(6)-sqrt(5) * sqrt(3)-sqrt(2)$ Il mio problema è che non so come devo svolgere il prodotto al numeratore. Io lo svolgerei così: $sqrt((6-5)(3-2)) = sqrt(18-12-15+10)=sqrt(1)=1$ ma è sbagliato... perchè il risultato completo ...
5
18 feb 2010, 16:46