Forum
Domande e risposte su qualsiasi materia per scuole medie, superiori e università da parte della community di studenti.
Domande e risposte
Ordina per
In evidenza
Una mole di un gas perfetto monoatomico esegue una trasformazione a seguito della quale la sua pressione varia dal valore iniziale $p_A=1.5*10^5 Pa$ al valore finale $p_B=2.5*105 Pa$. Il calore totale scambiato dal gas durante la trasformazione è $Q=2500 cal$. Sapendo che nello stato iniziale e in quello finale della trasformazione il volume del gas è uguale ($V=3 dm^3$), determinare: a) la variazione di energia interna subita dal gas; b) il lavoro fatto dal gas;
a) ...
ciao a tutti! volevo chiedervi una mano per risolvere questo problema in cui non riesco a impostare l'equazione:
in un numero di 2 cifre la cifra delle decine è 2; scambiando di posto le cifre si ottiene un nuovo numero che supera il primo di 9. determina il numero.
so che dovrei scrivere una mia possibile soluzione, ma non ho proprio idea di come impostare l'equazione... mi potreste aiutare voi?? grazie in anticipo:)
Grammatica-analisi grammaticali
Miglior risposta
se succedesse oggi? stia certa,non succede. ma è accaduto nella storia che il vesuvio si sia svegliato all'improvviso. se si svegliasse oggi, con il monitor continuo dell'osservatorio,ci sarebbe tutto il tempo per scappare. questo dice la gente,ma qualkuno pensa k potrebbe invece essere un disastro. il vesuvio,che dorme sa sessant'anni su un letto di magma tre volte più grande della città di napoli,è il vulcano più controllato del mondo ma se dovesse tornare a eruttare,la gente verrebbe ...
Ciao a tutti avrei bisogno di un aiuto sullo svolgimento di questo esercizio Calcolare i coefficienti della serie di Fourier del prolungamento periodico dispari della
funzione:
$f(x)= 2x^2 , x in[0,pi]$
Ringrazio anticipatamente
Salve a tutti!
Ho due domande da fare:
1) Sto studiando il seguente teorema:
Se $G$ è un gruppo tale che $|G|=p^n$ (dove $p$ è un numero primo) allora $G$ è un gruppo nilpotente di classe al più $n-1$
Nella dimostrazione di questo teorema ho costruito la serie centrale ascendente di $G$
$1<Z(G)\leq Z_2\leq\ldots\leqZ_c=G$
Sono arrivata a dimostrare che $\frac{Z_{n-1}}{Z_{n-2}}=\frac{G}{Z_{n-2}}$, ma non capisco l'ultimo passaggio del teorema cioè il perchè ...
Ciao a tutti
Devo calcolare $\root{5}{e}$ con 2 cifre decimali esatte, ma non so se sto facendo giusto.
Prendo $g(x)=e^x$. In questo modo $\root{5}{e}=g(\frac{1}{5})$ con $x_0=0$.
Considerando il resto di Lagrange $R_n(x)=\frac{g^{n+1}(\xi)}{(n+1)!}x^{n+1}$ ho che
$|g(\frac{1}{5})-P_n(\frac{1}{5})| = |\frac{e^x}{(n+1)!} \cdot \frac{1}{5^{n+1}}|$
Allora
$|g(\frac{1}{5})-P_n(\frac{1}{5})| \le \frac{e^{\frac{1}{5}}}{(n+1)!} \cdot \frac{1}{5^{n+1}} < \frac{3}{(n+1)! \cdot 5^{n+1}}<10^{-3}$, che è vero se $n \ge 3$
In questo modo
$P_n(\frac{1}{5})=P_3(\frac{1}{5})=\sum_{k=0}^3 \frac{g^k(0)}{k!}(\frac{1}{5})^k=\sum_{k=0}^3\frac{1}{k!}\frac{1}{5^k}= 1+\frac{1}{5}+\frac{1}{2 \cdot 5^2}+\frac{1}{6 \cdot 5^3} \approx 1,221$ con $n=3$ cifre decimali esatte.
Perciò
$P_3(\frac{1}{5}) - 10^{-3}<\root{5}{e}<P_3(\frac{1}{5})+10^{-3}$
$\Rightarrow 1,220<\root{5}{e}<1,223$
$\Rightarrow \root{5}{e} \approx 1,22$ con due cifre ...
devo trovare una primitiva di $x^2 f(x)$.
la funzione è la seguente:
$ sum_(n = 1)^(+oo) n^3[(1+1/n)-1] (x^3-1)^n $
per calcolarmi la primitiva dovrei calcolarmi l'integrale giusto??
quindi scrivo:
$int x^2 sum_(n = 1)^(+oo) n^3[(1+1/n)-1] (x^3-1)^n dx $
poichè $ sum_(n = 1)^(+oo) n^3[(1+1/n)-1] $ non dipende da x lo posso anteporre all'integrale e quindi calcolare:
$int x^2 (x^3-1)^n dx $
e adesso???
scusate se vi do fretta ma domani dovrei affrontare un orale ed ho ancora dei dubbi
ringrazio anticipatamente quanti interverranno!
Scrivo su questo forum perchè è qui che nell'ultimo periodo "sto vivendo".
Dopo non aver seguito tutto il secondo semestre di ingegneria, ho deciso di dare due esami studiando autonomamente.
Ho iniziato con geometria ed algebra lineare e devo dire che i risultati ci sono stati. Ho studiato tanto, mai forse così "bene" nella mia vita, ma per questione di tempo ho lasciato stare gli ultimi due capitoli del libro in quanto l'appello di elettrotecnica andava avvicinandosi.
Domani ci sarà l'appello ...
FIssato un riferimento ortonormale $ cc(R) = (O,B) $ nello spazio $ S3 $, si considerino le rette r ed s di equazioni
$ r:{ ( x-3z=0 ),( y+2z=1 ):} $
$ s:{ ( x=3t+2 ),( y=-2t-2 ),(z=t):} $
Si determini la distanza fra la retta r e la retta s
per prima cosa sono andato alla ricerca dei vettori di $ r $ imponendo $ z=t $
$ r:{ ( x=3t ),( y=-2t+1 ),(z=t):} $
quindi ho evidenziato il punto appartente a $ s $ , $ Ps(2, -2, 0) $ e ricavato il piano contenente $ r $, cioè ...
Salve, premetto di non essere mai stato un genio in matematica, non che la materia non mi piacesse, ma non ci ho mai messo un dovuto impegno. Sin da piccolo invece sono appassionato all'informatica in generale. La mia intenzione è quella di scegliere (tra un anno) la facoltà di Ingegneria Informatica, e quindi mettermi sotto con la matematica.
Ecco quello che voglio chiedervi è: potete linkarmi o copiarmi un programma dal 1° al 5° liceo che in questi giorni liberi di estate potrei seguire? ...
Salve a tutti non riesco a capire proprio come svolgere questo esercizio:
Determinare se è prolungabile con continuità
$f(x,y) = (e^(x-y)-1)/(2x-2y)$
L'altezza di un parallelogramma è la metà della relativa base e l'altro lato misura 12 cm. Determina il perimetro del parallelogramma, sapendo che la figura ha i due angoli acuti di 45°.
(58 cm)
sia $R2,2$ lo sapzio delle matrici reali di ordine 2 si dica se l'applicazione
$f$ tale che $f(A)=PAP^(-1)$ per ogni $A$ in $R2,2$ dove $P=((0,1),(-1,0))$
a)è lineare.
b) la matrice associata ad $f$ rispetto la base canonica
c)una base del nucleo, dell'immagine e si dica se f è iniettiva o suriettiva.
d)trovare $f^(-1)((0,1),(-1,0))$
e) studiare la diagonalizzabilità di $f$.
f)verificare che la restrizione ...
Un rettangolo ha la dimensione minore di 9 cm. Se lo ritagli lungo una diagonale e unisci i due triangoli rettangoli lungo il cateto maggiore, ottieni un triangolo equilatero. Quanto misura la diagonale del rettangolo? Calcola anche l'area del rettangolo.
(18 cm; 140,4 cm2)
Salve a tutti,
sto cercando di determinare il gradiente della $f(x,y) = cos2xseny$ nel punto $(pi/4 , pi/4)$
Se faccio il limite del rapporto incrementale mi esce la derivata rispetto x e rispetto y entrambe 0 se invece faccio subito la derivata rispetto a x esce -$sqrt(2)$...dove sbaglio???
Un quadrato costruito sul lato di un rombo ha l'area di 37,21 cm2.La diagonale maggiore del rombo e' di 12 cm.Calcola la differenza fra l'area del quadrato e quella del rombo.
(24,01 cm2)
Testo DI 25 Righe
Miglior risposta
Come testimoniano la popolarità degli oroscopi e il gran numero di trasmissioni televisivie condotte da maghi e cartomanti, non sono poche ancora oggi le persone che, insoddisfatte del proprio presente o preoccupate del proprio avvenire, credono nella possibilità di conoscere antiiaptamente il futuro o addirittura di modificarlo.
Esprimi, componendo un testo di circa 25 righe, il tuo parere su questo argomento.
Potreste farlo ??
Esercizio. Dire se le seguenti successioni ammettono limite per $n \to +\infty$ e, in caso affermativo, calcolare il valore di tali limiti:
(a) [tex]a_n:= \frac{\log{n!}}{n \log{n}}[/tex];
(b) [tex]b_n:= \frac{\sqrt[n]{(2n)!!}}{n}[/tex];
(c) [tex]c_n:= \frac{\sqrt[n]{(2n+1)!!}}{n}[/tex];
(d) [tex]d_n:= \frac{\sqrt[n]{n!!}}{n}[/tex].
In spoiler ricordo alcune definizioni utili per svolgere l'esercizio.
Addenda. Ricordo che il semifattoriale di un numero è la funzione ...
Come funziona l'apparecchio che permette al prof. Stephen Hawking di comunicare?
E' da ieri che ogni volta che sfoglio questo passaggio sul mio libro di Analisi ho il vuoto -non riesco ad immaginarmi nulla.
Sia $f: X -> Y$, siano $X_1$ , $X_2 $ e $A$ sottoinsiemi di $X$ e $Y_1$ , $Y_2$ e $B$ sottoinsiemi di $Y$.
Valgono le seguenti cose:
1. $f^(-1) (Y_1 nn Y_2) = f^(-1) (Y_1) nn f^(-1) (Y_2)$[/list:u:2kynygwi]
2. $f(X_1 nn X_2) sube f(X_1) nn f(X_2)$[/list:u:2kynygwi]
Qualche dritta per ...