Forum

Domande e risposte su qualsiasi materia per scuole medie, superiori e università da parte della community di studenti.

Domande e risposte

Ordina per

In evidenza
In evidenza
Più recenti
Più popolari
Con risposta
Con miglior risposta
Senza risposta
18Gigia18
Si consideri il polinomio $ f(x)=x^6+3 $ in $ ZZ_7[x] $ . Calcolare il campo di spezzamento $ E $ di $ f $ su $ ZZ_7[x] $. Allora $f$ non ha ridici in $ ZZ_7[x] $ e quindi io ho scritto $ f$ come $ x^6-4 $ da cui $ f=(x^3-2)(x^3+2) $. Ma a questo punto che faccio? Scompongo ancora i fattori?

ee4
Ciao Sto trovando problemi nel calcolo di questo volume di solido: $T={(x,y,z) R^3: x^2 + y^2 <= 4 , y -z +1 >=0 , z>= -4}$ sto guardando: http://it.wikipedia.org/wiki/Teoremi_di_Pappo-Guldino passo a coordinate cilindriche: $x= \rho cos \theta$ $y = \rho sin \theta$ $z=z$ quindi quel T diviene: $-2<= \rho <= 2$ $z>=-4$ con $\rho sin \theta -z +1 >=0$ e in $z$ posso mettere direttamente $4$? Scusate, è il mio primo esercizio e vorrei farlo per passi! Grazie forum!
5
ee4
17 lug 2012, 17:23

ee4
Ciao, sono di nuovo io. Altra domanda, un pò particolare stavolta: un esercizio sul seno integrale. ''determinare la primitiva nulla per $x=0$ della funzione: $f(x) = (sin x)/x$ dato che la primitiva non è possibile scriverla in funzioni analitiche, uso la serie: $sin(x) = x - x^3/3!$ $\int (x - x^3/3!)/x dx = x - (x^3)/18 + c$ il fatto che dica che sia nulla per $x=0$ mi dice che posso usare quell'approssimazione di taylor? O mi da una condizione alla primitiva per trovare la costante ...
5
ee4
13 lug 2012, 21:31

squall901
Salve a tutti, c'è un esercizio di algebra dove non riesco a trovare l'errore. L'esercizio in questione dice: trovare un campo con 27 elementi. Ho provato con il seguente anello Z/3Z[cos(2/3pigreco)+isen(2/3 pigreco)] cioè il più piccolo anello contenente Z/3Z e la radice cubica dell'unità che chiamerò per comodità u. Studiando gli elementi di tale anello mi accorgo che elevando a potenza u dopo 3 step ritorno al numero di partenza; inoltre gli elementi di Z/3Z sono 3. Quindi un generico ...

daniele912
Salve a tutti! Affrontavo il seguente problema di algebra lineare con cui ho avuto qualche problema. La traccia è: Sia $\psi : CC_2 [t] * CC_2 [t] -> CC$, definita da $\psi (f,g) = f(0) g(0) + f^{\prime} (0) g^{\prime}(0) + f^{\prime}'(0) g^{\prime}'(0)$; i) si provi che $\Psi$ non è un prodotto scalare hermitiano in $CC_2 [t]$; ii) si indichino $f,g in CC_2 [t]$ tali che $\psi (f,f) = -1, \psi (g,g) = 0 $, rispettivamente; iii) si indichi$ {h in CC_2 [t] | \psi (h, 1 + it - it^2) = 0 }$. Ho cercato di svolgere il primo punto dell'esercizio ma ho subito incontrato dei problemi a risolverlo. Per ...

fiducioso-votailprof
Ciao ragazzi/e volevo sapere se la riunione per l'assegnazione stage è già stata fatta ! Perché nel sito non compare ancora nulla ed inoltre mi sono ritrovato, nel portale studenti, la voce ' altre attività ' con il nome della prof. con cui penso dovrò fare lo stage, anche se non era questa la mia richiesta ! Cmq in caso affermativo sapete a chi devo rivolgermi per avere delucidazioni in merito alla prassi da seguire ? Grazie mille :rolleyes:

cillorobot
Ciao a tutti, non voglio tediarvi raccontando il perchè o il per come, ma, non avendo modo di frequentare le lezioni o andare al ricevimento studenti, ho necessità di qualcuno che mi dia una mano con l'esame in oggetto via skype, ovviamente dietro compenso. L'esame è sostanzialmente geometria 2, quindi tutta la parte di geometria proiettiva e una prima parte di topologia : per una idea più concreta, http://www.dm.unipi.it/~pardini/testi_geo2.htm trovate i testi del corso, e http://unimap.unipi.it/registri/dettreg ... ::&ri=4358 il programma ( fino al punto ...
2
18 lug 2012, 14:31

Ale ù.ù
Ricerca lamborgini Miglior risposta
cosa posso scrivere in una ricerca sulla lamborghini
1
18 lug 2012, 14:34

Sk_Anonymous
Il voto (che i professori danno agli studenti) è una grandezza fisica? Se si, qual è la sua definizione operativa ? Ai professori: non ditemi che valutate gli studenti senza conoscere la definizione operativa del "voto"!!!
26
17 lug 2012, 11:22

dixan
all'interno di un triangolo equilatero ABC e' stato disegnato il quadrato DEFG con il lato DE giacente sul lato AB del triangolo e gli altri due vertici F,G,rispettivamente,posti sui lati BC e AC .sapendo che l'area del quadrato e' 9 dm2,calcola l'area del trapezio ABFG .(RIS 1419 CM2 )
1
18 lug 2012, 13:00

kobe89
Una portata massica di 1000 kg/h di azoto (massa molecolar e: MW = 28 kg/kmol, k = 1,4) espande in una turbina dalle condizioni iniziali T= 1000 K e p1= 8 bar fino alla pressione p2= 1,5 bar secondo una trasformazione adiabatica reversibile. Valutare la temperatur a alla fine della espansione. Sapendo che la turbina è collegata ad un generatore elettrico con rendimento elettrico= 0,85, determinare la potenza elettrica che il generatore è in grado ...

tuturo89
Salve... sto studiando Analisi Matematica e nello studio di un esercizio mi sono venuti dei dubbi dato che non ho ancora ricevuto alcune proprietà.. L'argomento riguarda gli "o piccolo" e l'esercizio è il seguente: o( (x-1)^3 ) io ho risolto cosi: ho risolto il cubo ==> o(x^3 - 3x^2 + 3x - 1) da qui non ho avuto alcuna precisazione su come si risolva da qui parte la domanda: questo diventa : o(x^3) - o(3x^2) + o(3x) - o(1) ???? (1° domanda) (2°domanda): se pur fosse cosi, o(1) non viene ...
8
18 lug 2012, 14:06

federicaaosta
Problema (86305) Miglior risposta
mi servirebbe aiuto con questo problema l area di un parallelogramma è di 8100 cm e il perimetro e di 1080 cm e il lato minore e 2 terzi del maggiore calcola le misure delle altezze relative ai dati grazie
1
18 lug 2012, 13:59

3691
Salve ragazzi, ho un problema con la verifica di questo problema, in realtà è quasi una curiosità: Dati P=(1,2,0) e Q=(3,1,1) determinare le equazioni parametriche/cartesiane di r per P e Q. Dunque, trovato il vettore PQ impongo il passaggio della retta per P (e parallela a PQ): mi trovo il seguente sistema (eq.parametriche): x=1+2t y=2-t z=t Ora, per determinare l'eq.cartesiana di r, mi occorrono una o due equazioni e, soprattutto, perché? Io avevo trovato, semplicemente x+2y-5=0, ma ho il ...
2
18 lug 2012, 13:47

gico19
Prima domanda per me! Mi preparo per l'orale di geometria di domani Ho questo endomorfismo: {f(x,y,z,t) € R^4| x+y+2z=x+3t) Devo calcolarne dimensione nucleo, immagine e una base! Per tutti gli endomorfismi classici f(x,y,z,t)=(x+y,y+z,x+t,z+t) ad esempio non ho problemi...ma con quello sopra entro un po nel pallone! Grazie a tutti anticipatamente
11
18 lug 2012, 11:03

@lice
L'area di un rombo e' 25,20 m2 e la diagonale minore misura 5,6 m.Calcola il perimetro del rombo.Determina inoltre la differenza fra questo perimetro e quello di un quadrato equivalente al rombo. (21,2 m; 1,12 m) però sono riuscita fino ad un punto, cioe': 25,20:5,6 = 4,5 4,5x2= 9 5,6:2 = 2,8 2,8x2,8= 7,84 9:2=4,5 4,5x4,5= 20,25 20,25 + 7,84 = 28,09 rad quadrata 28,09 = 5,3 5,3 x 4 = 21,2
1
18 lug 2012, 12:37

daniele912
Ciao a tutti! Ho incontrato qualche problema nello svolgimento di questo problema di geometria di cui non ho soluzione. La traccia del problema è la seguente: Rispetto ad un sistema di riferimento ortonormale, si consideri il cono circolare retto $\Theta$ di asse $a$ : $ { ( x_1 = 1 + 2t ),( x_2 = -1 - t ),( x_3 = 1 - 2t):} $ e vertice $V = ((1),(-1),(1))$ e semiapertura $\pi /6$; si indichi $P !in a $ e $P$ interno a $\Theta$. Ho svolto l'esercizio trovando il vettore ...

daniele912
Salve a tutti! Stavo provando a svolgere un esercizio di algebra lineare la cui traccia è la seguente: Sia $K$ un campo di caratteristica 2; si provi che $((\alpha, \beta),(\beta, \alpha))$ in $K^(2x2)$ è diagonalizzabile in $K$ se e solo se $\beta = 0$ Per prima cosa ho calcolato il polinomio caratteristico: $det (A - \lambda I) = det ((\alpha - \lambda, \beta), (\beta, \alpha - \lambda)) = (\alpha - \lambda)^2 - \beta^2 = 0 $ Da cui si ricavano i seguenti autovalori: $\lambda_1 = \alpha - \beta$ e $\lambda_2 = \alpha + \beta$ Se $\beta != 0 $, si hanno due radici distinte per cui ...

Sk_Anonymous
Premetto che è il primo esercizio che faccio in tal proposito e uno dei primi in generale sulle funzioni di più variabili, quindi potrei dire delle enormi boiate! Esercizio. Determinare i punti critici di \(f(x,y)=x \sqrt[3]{y}\) e determinarne la natura. Io lo sto svolgendo così, dov'è che sbaglio? Ho trovato \[\frac{ \partial }{\partial x} f(x,y)=\sqrt[3]{y}\] \[ \frac{ \partial }{\partial y} f(x,y)=\frac{x}{3 \sqrt[3]{y^2})}\] se \(y \ne 0\) Pongo quindi le derivate parziali uguali a ...

SeccoJones
$\intintint_{V} \ 1/(x^2 + y^2 + z^2) dx\dy\dz$ con $\V={ z^2<=x^2 + y^2 <= 4z^2 , 1<= z + sqrt(x^2 + y^2)<= 3} $ Ragionando sullo svolgimento di questo integrale ho pensato di farlo per strati. Dalla prima disequazione, posso intuire che $\z>=0$ , in quanto $\ z^2<=x^2 + y^2 <= 4z^2 => z<=sqrt(x^2 + y^2)<= 4z$ , poiché dovendo essere la radice un valore positivo, allora anche $\z$ deve essere positivo! Quindi ponendo $\ rho=(x^2 + y^2)$ per il cambio in coordinate polari, avrò $\ rho in [z, 2z] $ e $\ vartheta in [0, 2pi] $ . Ora il problema è come determinare gli estremi di ...
2
16 lug 2012, 13:50