Forum
Domande e risposte su qualsiasi materia per scuole medie, superiori e università da parte della community di studenti.
Domande e risposte
Ordina per
In evidenza

Buonasera, ho svolto il seguente esercizio, dal momento che non ho le soluzioni a disposizione, volevo sapere se il ragionamento che ho fatto e l'esecuzione sono corretti:
Una pallina di massa 1 Kg urta alla velocità di 10 m/s una seconda pallina ferma, di massa 2 Kg. Dopo l’urto le palline rimangono coese e vanno a comprimere una molla di costante elastica K = 800 N/m. Calcolare la compressione della molla.
Essendo un urto anaelastico ho calcolato la velocità finale delle due palline come ...
Siano $f=x^3-x-1$ e $g=x^3-x+1$ polinomi in $\mathbb{F}_(3)[X]$. Determinare i campi di spezzamento di $f$ e $g$, e determinare esplicitamente, se esiste, un isomorfismo $\varphi:\mathbb{F}_(3)[X]_(/(f))->\mathbb{F}_(3)[X]_(/(g))$. Per i campi di spezzamento abbiamo $\mathbb{F}_(3)[X]_(/(f)) e \mathbb{F}_(3)[X]_(/(g))$ che sono entrami isomorfi a $\mathbb{F}_(27)$. Per l'isomorfismo in teoria sarebbe $\varphi([ax^2+bx+c]_(f))=[ax^2+bx+c]_(g)$ con $a,b,cin\mathbb{F}_(3)$. Non so però se sia giusto se potete confermarmi o confutarmi grazie.
Riassunto Promessi sposi cap 9
Miglior risposta
Ciao a tutti, fare I riassunti non è il mio forte, io impratica devo fare Il riassunto del capito 9 se non erro sulla monaca di Monza. Grazie a coloro che mi aiutereranno

Gentili utenti,
vorrei sapere se ho impostato correttamente lo svolgimento del seguente esercizio:
Stabilire se il gruppo $U(\mathbb{Z_{36}})$ è ciclico
Svolgimento:
Si ha
$U(\mathbb{Z_{36}}) = \{1,5,7,11,13,17,19,23,25,29,31,35}$
dove, per semplicità, si è indicata con $a$ la classe di resto $[a]_36$
Trattandosi di un gruppo finito, di ordine $12$, per il teorema di Lagrange ogni $a \in U(\mathbb{Z_{36}})$ ha per ordine uno dei seguenti
$1,2,3,4,6,12$
Dobbiamo verificare se esista un elemento di ...
Domanda legata a questa https://www.matematicamente.it/forum/viewtopic.php?f=54&t=223353
Mi sono reso conto di una cosa cercando di risolvere questo esercizio
Consideriamo una passeggiata aleatoria semplice modificata su \( \mathbb{Z} \) che parte da \(0\) e che salta con probabilità \( 3/4 \) a destra e con probabilità \(1/4\) a sinistra. Dimostra che il valore atteso del numero di visite di \(0\) è finito. Dimostra che è uguale al seguente integrale
\[ \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{1}{1- \frac{1}{2} \cos \xi - \frac{1}{2} e^{i ...

Buonasera,
vorrei per favore assistenza per il punto 2.3) del seguente esercizio:
Segue il mio svolgimento, per completezza anche dei punti precedenti:
punto 2.1)
$E_(MAX)=(Q'_(MAX))/(pi*d/2*epsilon)=(C'*V_(MAX))/(pi*d/2*epsilon)$
con $C'=(pi*epsilon)/(ln((d-a)/a))$ capacità per unità di lunghezza
Quindi $E=V_(MAX)/(d/2*ln((d-a)/a))=1,44 (kV)/m$, dunque sono compatibili ambedue gli isolanti
punto 2.2)
$W_e=1/2*C*V^2=1/2*C'*l*V^2=(pi*epsilon_0*epsilon_r*l*V^2)/(2*ln((d-a)/a))$
$W_e$ è minima per $epsilon_r=2,3$ (PE) e $V=0,2 kV$
punto 3.2)
$DeltaV=I*(R_l*cos(phi)+X_L*sin(phi))<=10 V$
con ...

Salve a tutti, scrivo perché avevo dei dubbi sulla risposta a regime permanente, come da titolo.
Il mio dubbio sta nel fatto che non capisco quale tipo di stabilità serva per garantire l'esistenza della risposta a regime permanente:
Stabilità interna (e quindi parte reale di tutti gli autovalori $ <=0 $ ), oppure
Stabilità asintotica (quindi parte reale di tutti gli autovalori $ <0 $?
Vi ringrazio in anticipo e vi auguro buona serata.
Sopra cento e sotto cento economia
Miglior risposta
aiutatemi con questo problema di economia
un negozio di vendita di materiale elettronico vende un tablet a 270 euro conseguendo un utile pari al 25% del costo di acquisto del tablet stesso. Determina a quale prezzo dovrebbe essere venduto il tablet se si intendesse realizzare un utile pari al 35% del ricavo
i risultato sono:332.31
E' URGENTISSIMOOO PER FAVORE
Miglior risposta
1. Una carriola trainata da un muratore che ha una forza di 100 Kg. Se la carriola ha il manico di
trasporto lungo 2 metri e la distanza tra la ruota e la cassa di trasporto misura 40 cm. Qual è il limite
di trasporto per il muratore?
2. In una leva di primo genere la somma della resistenza e della potenza è di 90 kg e la potenza è metà
della resistenza. Calcola la lunghezza del braccio della potenza sapendo che il braccio della
resistenza è lungo 2 metri.
3. Un ragazzo solleva una ...

Supponete di avere a disposizione due recipienti di vetro trasparente, perfettamente cilindrici ed inizialmente vuoti (però potete avere tutta l'acqua del rubinetto che volete ), della capacità di $3$ litri l'uno e di $7$ litri l'altro.
Come fate a versare $15$ litri in un secchio sufficientemente capiente in sole quattro mosse?
Cordialmente, Alex
Sia $K$ un campo e consideriamo il polinomio di $F=x^2+y^2+z^2inK[X,Y,Z]$. Se $char(k)!=2$ consideriamo il campo $L=K(Y,Z)$. Mostrare che $F$ è irriducibile in $L[X]$. Allora io ho pensato che siccome $x^2+y^2+z^2$ è di secondo grado in $L[X]$ allora se fosse riducibile si scriverebbe come due polinomi di primo grado in $L[x]$, per cui ammette radici. Ora sappiamo che le radici di un polinomio sono della forma ...
Sia $f=x^2+x+1inQQ[x]$ e $A={g/h: g,hinQQ[X], f∤h}$. Abbiamo che l'unico ideale massimale è $I={(fg)/h: f∤h}$, devo mostrare che $A_(/I)$ è un estensione finita di $QQ$. Abbiamo che $[f]_(I)=[0]_(I)$, se mostrassi che $[g/h]_(I)$ si può scrivere nella forma $[aX+b]_(I)$ avremmo che $A_(/I)$ è un estensione finita di $QQ$ di grado $2$. In teoria se $deg(g)>=2$ posso dividerlo per $f$ e quindi otterrei che ...
Compito un po’ urgente
Miglior risposta
Ciaooo, devo fare un compito in cui devo scrivere un episodio in cui ho avuto un forte contrasto con i miei genitori. Devo mettere in risalto la mia reazione e narrare la conclusione della vicenda come posso fare? Grazieee :D

Buonasera, vorrei un aiuto per capire come ricavare queste due equazioni orarie
$ x - x0= 1/2*(v0 + v)*t $
$ x - x0 = v*t - 1/2*a*t^2 $
a partire dalle seguenti leggi orarie:
$ v = v0 + a*t $
$ x -x0 = v0*(t) + 1/2*a*t^2 $
come libro sto utilizzando l’Halliday, però non sempre è chiaro, ho provato a isolare e a fare delle sostituzioni per ottenere quelle formule, ma non mi trovo, se potete per favore darmi una mano per capire come ricavarle.
vi ringrazio in anticipo

Un corpo di massa m = 5 kg partendo da fermo e da un’altezza di H0 = 5.20 m scende lungo un piano inclinato
di angolo α = 35°. Quando arriva alla fine del piano inclinato risale per un altro piano con stesso angolo di inclinazione.
Sapendo che il corpo si ferma ad un altezza h= 3.73 metri e che durante il moto il modulo della forza di attrito è
costante, calcolare il coefficiente di attrito dinamico tra corpo e piano.
Ho impostato l'esercizio imponendo deltaE = Lfnc quindi: ...

Ciao! Ho provato a risolvere questo problema ma non ho la soluzione e il risultato mi sembra troppo fuori scala.
Il testo è il seguente:
"Due fili di lunghezza infinita sono disposti parallelamente lungo l'asse delle y ad una distanza \(\displaystyle d = 5.00 cm \) l'uno dall'altro. Le due correnti hanno verso opposto.
Dato \(\displaystyle I_1 = 8.00 A \) (a destra), determinare \(\displaystyle I_2\) (a sinistra) se si vuole che nel punto di mezzo tra i due fili il campo magnetico abbia ...
Sto cercando di capire il legame che sussiste tra l'esattezza di una forma differenziale chiusa e il tipo di dominio in cui quest'ultima è definita.
In particolare, il mio libro di testo (Zorich, Mathematical Analysis II, pag. 296) mi propone il Lemma di Poincaré:
Una forma differenziale chiusa in una palla, è lì anche esatta.
Fin qui ok. Poi l'autore aggiunge: il lemma può anche essere letto equivalentemente dicendo "ogni punto del dominio di definizione della forma differenziale ...
Sia $A=ZZ[2/3]$ l’intersezione di tutti i sottoanelli di $QQ$ che contengono sia $ZZ$ che $2/3$. Determinare gli elementi invertibili di $A$.
Allora intanto ho notato che $AsubZZ[1/3]={a/3^n| ainZZ,n>=0}$ per cui i possibili elementi invertibili sono della forma $3^k$ con $kinZZ$, ora c'è da mostrare se sono tutti questi o c'è qualcuno da togliere. Inoltre avevo pensato se $ZZ[2/3]={a*(2/3)^n| ainZZ,n>=0}$ ma non mi sembra funzioni come ...

Ciao ragazzi, data un applicazione lineare del tipo:
\(\displaystyle f(x,y,z) = 2(x+y+z) \)
scrivere la matrice associata ad \(\displaystyle f \) rispetto alle basi canoniche di \(\displaystyle R_3 \), mi chiedevo esattamente da dove usciva fuori che la matrice associata fosse una matrice diagonale con tutti 2 nella diagonale...
Per esempio:
\(\displaystyle f(1,0,0) = 2(1+0+0) = (2) \) non \(\displaystyle (2,0,0) \) , giusto? o mi sfugge qualcosa?
Per esempio, mi aspetterei una matrice ...

Un'asta conduttrice di lunghezza 25 cm, massa
5,0 g e resistenza 0,50 ohm può scivolare senza
attrito su due lunghe guide metalliche parallele e
inclinate di 30 gradi rispetto all'orizzontale. Gli estremi
delle due guide sono collegate da un filo elettrico
di resistenza trascurabile. È presente un campo
magnetico perpendicolare all'asta, orizzontale e
uniforme di modulo 0,60 T. Trascurando la resi-
stenza delle guide e ogni altra forma di attrito
calcola la velocità di regime ...