Forum
Domande e risposte su qualsiasi materia per scuole medie, superiori e università da parte della community di studenti.
Domande e risposte
Ordina per
In evidenza
Versione: Alcibiade non aveva scrupoli
Miglior risposta
Mi aiutate?
Versione: Discorso di Ciro a Ciassare
Miglior risposta
L'ho tradotta. Ho bisogno di una conferma :)
Ciao a tutti ragazzi, ho questo integrale:
$ int (x^3)/(x^2+4x+3) dx $
per risolverlo ho fatto i seguenti passaggi:
1. essendo il grado del numeratore maggiore rispetto al denominatore, ho provveduto a fare la divisione di polinomi, potendo riscrivere l'integrale in questo modo: $ int x-4+(13x+12)/(x^2+4x+3) dx $
2. fattorizzo il denominatore facendolo diventare così: $ (x+2)^2-1 $
3. scrivo $ (13x+12)/(x^2+4x+3) = A/((x+2)-1)+B/((x+2)^2-1) $ risolvendo il sistema troverò che $A = 13,B=-14$
4. in virtù dei passi precedenti posso ...
Ciao a tutti, è da qualche giorno che sto impazzendo con questo esercizio di geometria. A me sembra che manchi un dato fondamentale: il punto di tangenza tra la retta e la sfera, senza il quale non riesco a risolvere l'esercizio.
Vi propongo il testo:
"Determinare le equazioni delle rette passanti per il punto$ M = (0, 0, 1) $ , parallele al piano $ π: x+z = 0 $ e tangenti alla sfera di centro $ C = (0,4,2) $ e raggio pari a 2."
Io so che una retta nello spazio è individuata da due ...
POTETE CONTROLLARE SE L'HO SVOLTO BENE IL PROBLEMA?
Miglior risposta
Potete vedere se ho risolto bene il seguente problema: file:///C:/Users/Seven/Desktop/MATMATICA%20Assegno%20vacanze/pitagora-euclide.pdf è il n 9 del file . Allora io l'ho svolto così:
CB= radice quad. di HB^2 + CH^2 = 40
BH:CH=CH:AH
AH= 24x24/ 32 = 18
CA radice quad. AH^2 + CH^2 = 30
Perimetro= 30+40+50= 120
Area= 50x24/2= 600
L'ho svolto bene???
Grazie in anticipo ;)
buongiorno,
se possibile desidererei una conferma sulla risoluzione del seguente es.:
Testo:
Un corpo puntiforme di massa m = 4 kg pende verticalmente essendo attaccato all’estremità inferiore di una molla di costante elastica $k = 196 N/m$ e lunghezza a riposo $l_0 = 0.6 m$, disposta verticalmente e avente l’estremità superiore ancorata al punto O del soffitto della cabina di un ascensore.
Inizialmente l’ascensore è in quiete e il corpo si trova in condizioni di equilibrio ...
data $A= ( ( 6 , -9 ),( 4 , -6 ) ) $
determinare il sottospazio delle matrici X di $R^(2,2)$ tali che $AX=XA$
ho fatto $ ( ( 6 , -9 ),( 4 , -6 ) ) ( ( a , b ),( c , d ) )= ( ( a , b ),( c , d ) ) ( ( 6 , -9 ),( 4 , -6 ) ) $
sviluppato il prodotto risolto il sistema lineare e trovato d=0, a in relazione con b e c tramite un parametro libero s
in modo che il sottospazio alla fine risulta generato da $ {(3s,-9/4s,s,0)} $ con dimensione uno
ora essendo che il sistema lineare a due righe proporzionali è ragionevole che il rango sia 3 e che il parametro libero sia uno e che ...
Avrei bisogno di chiarimenti per quanto riguarda un argomento... Siano $\phi$ e $\psi$ due prodotti scalari, di cui $\phi$ definito positivo. Allora prendo $(V,\phi)$ spazio euclideo, e considero le matrici indotte dai due prodotti scalri nella base (per esempio) canonica. Avrò allora due matrici simmetriche $A=M_{can}(\phi)$ e $B=M_{can}(\psi)$ dove can indica la base canonica. Siccome sono in uno spazio euclideo e $B$ è simmetrica, per il ...
data la sfera $ \Sigma : x^2+y^2+z^2-2x+y = 0 $ e la retta ( data come intersezione di due piani) $ r : 2x+z−5=0 ; y + z = 0 $ trovare l'equazione dei piani tangenti a $ \Sigma $ che contengono la retta $ r$
Sembra un esercizio classico ma non mi torna!
Ho ragionato così: considero il fascio di piani $ F: 2x+z−5 +k( y + z) = 0 $ impongo che la distanza del centro della sfera $(1,-frac{1}{2},0)$ al generico piano del fascio, sia uguale al raggio della sfera: $frac{sqrt(5)}{4}$.
Ma mi escono numeri assurdi.
scusate ma non è un controsenso che due vettori paralleli siano dipendenti
bar(v) t + bar(u) g = 0 da cui bar(v) = -bar(u)(g/t)
ed allo stesso tempo perché due vettori siano paralleli devono essere proporzionali?
bar(v) t/g = bar(u) da cui bar(v) = bar(u)(g/t)
Ciao a tutti
Non riesco a capire come invertire segno e valore.
Ho questa espressione:
2alfa(k-4) - 8 + k fratto (4-k)
Come faccio a far comparire al denominatore lo stesso valore (k-4) presente al numeratore?
Questo mi consente poi di semplificare.
Grazie infinite
Come faccio a trovare per quali valori di $h$ il vettore $v$ appartiene a $Imf$.
Ciao
Sto cercando di risolvere questo esercizio:
Sia $X$ lo spazio delle successioni reali, prese $x=(x_n)$, $y=(y_n)$ in $X$ definiamo
$$
d(x,y) = \sum_{k=1}^\infty \frac{1}{k!} \frac{|y_k-x_k|}{1+|y_k-x_k|}.
$$
Provare che $d$ è una distanza su $X$ non indotta da alcuna norma.
Non ho avuto problemi a dimostrare che per ogni $x,y \in X$:
1) $d(x,y) \geq 0$
2) ...
Testo:
Un corpo puntiforme di massa m = 2 kg pende verticalmente dal soffitto di una stanza essendo ancorato all’estremità di una molla di costante elastica $k = 98 N/m$ e lunghezza a riposo $l_0 = 0.8 m$, disposta verticalmente e avente l’estremità superiore vincolata ad un punto fisso O del soffitto stesso.
Inizialmente il corpo si trova in equilibrio statico a una distanza $h_0 = 0.6 m$ dal punto $O$ mediante un filo inestensibile e privo di massa che pende esso ...
Ciao a tutti
mi trovo un esercizio di cui vorrei essere sicuro di stare facendo il procedimento giusto
chiesto di calcolare l'integrale doppio di
$f(x,y) = 1+e^(y/x)$
utilizzando un quadrilatero $A$ di vertici $(1,0)(1,1)(3,0)(3,3)$
io ho visto che il quadrilatero è un trapezio
ho quindi pensato di scomporre l'integrale nella somma della parte rettangolare e di quella triangolare
per quanto riguarda la parte rettangolare pensavo di calcolare
$int_(1)^(3) int_(0)^(1) f(x,y) dydx $
mentre per la ...
Salve a tutti , sto facendo degli esercizi sugli sviluppi di taylor ma non capisco una cosa . L'esercizio dice :
-Utilizzando gli sviluppi fondamentali, calcolare gli sviluppi di McLaurin (con resto di Peano)
delle funzioni seguenti fino all’ ordine n indicato:
$ f(x) = cos(x^2) $ fino a n = 10
Lo sviluppo notevole del coseno è :
$ cos z = 1 - z^2 / (2!) + z^4 / (4!) + ...+ (-1)^n (z^(2n)) / (2n!) + o(z^(2n)) $
posso troncare lo sviluppo fondamentale al termine in $ z^4 $
$ cos z = 1 - z^2 / (2!) + z^4 / (4!) + o(z^4) $
Sostituiamo z = ...
Siano u=(1,2,-1), v=(1,0,2), w=(1,-1,1)
Determinare w' ortogonale a u, a v, avente norma uguale alla norma di w e formante un angolo ottuso con j.
Ho pensato di porre a sistema le condizioni date quindi:
Norma di w = 3^(1/2)=(w1'^2 +w2'^2+w3'^2)^(1/2);
Cos(w'j)=w2‘/norma w'
Holiday Horizons 1 (222883)
Miglior risposta
Soluzioni holiday horizons 1?
Caio a tutti, ho una domanda da fare su un esercizio:
Testo: Un piccolo pianeta orbita attorno ad una stella con un orbita circolare di raggio $r = 200*10^6km$ con un periofo $T = 172$ giorni.
1) Quall'e' la velocita' del pianeta?
2) quall'e' la massa della stella?
Nota: si ricorda che $G = 6.7*10^(-11)(Nm^2)/(kg^2)$
Io ho pensato di fare così:
1) Convertendo i giorni in ore e lasciando i km ottengo: $v = \text(spazio)/\text(tempo) = (2\pir)/T = (6.28*200*10^6)/(172*24) = 0.2973484*10^6 (km)/h$
Ora pero' per il punto 2 non so andare avanti. Io so che c'è una forza ...