Matematicamente
Discussioni su temi che riguardano Matematicamente
Domande e risposte
Ordina per
In evidenza

Una distribuzione di carica non uniforme a simmetria planare è distribuita tra i due piani x=-b ed x=b. Tra i due piani la densità di carica per unità di volume dipende da x secondo la legge ρ= γ*x^2, con γ costante positiva.
a) Determinare modulo direzione e verso di E nella regione -b

Salve a tutti, dovrei risolvere questo esercizio ma ho alcune perplessità in quanto si tratta di operare nello spazio vettoriale $C^4$, ho la soluzione data dal professore ma non capisco alcuni passaggi.
In tale spazio dotato di prodotto scalare euclideo sono assegnati il sottospazio $V={(x,y,z,t) | 2x +iy -2t = 0}$ e l'endomrfismo $\varphi : C^4 -> C^4$ che ad ogni vettore $v in C^4$ associa il suo simmetrico $\varphi(v)$ rispetto a $V$. Calcolare la matrice ...
Esercizio successione
Miglior risposta
Ciao, mi servirebbe capire come si svolge questo tipo di esercizio perfavore, che non so come partire.
Aggiunto 1 minuto più tardi:
la richiesta sarebbe:
- Studiare il comportamento della seguente successione e calcolarne il limite.

Domanda, se io sono nello spazio ed ho i piani con equazioni date da sole 2 incognite o da solo una incognita (si dovrebbero chiamare piani coordinati) posso fare questo?
Esercizio di esempio:
I 3 piani (A), (B), (C) appartengono ad uno stesso fascio (proprio od improprio)?
(A)2X -3Y +3 = 0 ; (B)X -Y +6 = 0 ; (C)X -3Z = -1
(In questo caso vi chiedo, in (A)(Z=3), in (B)(Z=6), in (C)(Y=0) ?)
È giusto dire che ad esempio (A) ha equazione Z=3 (Discorso analogo per (B) e ...

Aiuto Fisicaaa D:
Miglior risposta
Grafico relatività galileiana ?

Relatività galileiana (1)
Miglior risposta
Come si fa il grafico della relatività galileiana ??

l'esercizio è questo
"siano$(A,+,*)$ un anello unitario dove $a€A$ ed$adiverso da0A$ tale che $a^2=0A$
si calcolino $(1A+a)(1A-a)$ ,$(1A-a)(1A+a)$e si interpreti il risultato"
io ragionandoci su sono arrivato a vedere
$(1A+a)(1A-a)=1A-a+a-a^2=1A+0A=1A$ e
$(1A-a)(1A+a)=1A-a+a-a^2=1A+0A=1A$
è così? poi cosa dovrei fare ? grazie
Ho il seguente limite: $lim_(x -> +infty)(1+e^-x)^(2^(x)logx)$. Questo limite si presenta nella forma indeterminata: $1^infty$. Io lo devo ricondurre a questo limite notevole: $lim_(x -> x_0)(1+f(x))^(1/f(x))=e$, con $f(x)rarr0$. E quindi scrivo: $lim_(x -> +infty)((1+e^-x)^(1/(e^-x)))^(e^-x2^xlogx)$. Quindi la prima parte fino al primo esponente so già che fa $e$. Il secondo esponente, cioè: $e^-x 2^xlogx$ dà come risultato un'altra forma indeterminata, cioè: $0*infty$. Il prof mi ha spiegato che quando ci si trova al cospetto ...
Salve a tutti. Mi chiedo come si possa trattare l'aderenza di un flessibile (nel mio caso una cinghia piana) nel caso di due pulegge (una motrice, una condotta) a partire dall'avviamento e durante tutto il transitorio. La coppia motrice è dettata dalla caratteristica del motore ed è una funzione che decresce linearmente secondo la legge $Cm=Cm(max)-komega$.
La coppia resistente è una costante contente pure gli attriti.
Nel moto a regime è semplice poichè basta usare la formula di ...
Ho un problema semplice con una divisione tra due binomi complessi
[tex]\frac{\sqrt{2}+i}{\sqrt{2}-i}[/tex]
Io farei così:
[tex]\frac{\sqrt{2}+i}{\sqrt{2}-i}=\frac{\sqrt{2}+i}{\sqrt{2}-i}\frac{\sqrt{2}+i}{\sqrt{2}+i}=\frac{(\sqrt{2}+i)^2}{\left | \sqrt{2}-i \right |^2}[/tex]
Wolfram Alpha invece moltiplica per un per un fattore che ha anche la radice con il segno negativo, ovvero
[tex]\frac{-\sqrt{2}-i}{-\sqrt{2}-i}[/tex]
Come mai?

DIMOSTRARE DUE TEOREMI?
Miglior risposta
Salve a tutti, mi potete aiutare a dimostrare questi due teoremi? Grazie in anticipo! ;)
1) Dato un triangolo qualunque ABC, prolunga la mediana AM di un segmento MD≅AM e congiungi D con B. Dimostra che gli angoli MDB e MAC sono tra loro congruenti.
2) Sia ABC un triangolo equilatero. Sui suoi lati, nello stesso senso, si prendono i tre segmenti congruenti AP≅BQ≅CR. Dimostra che il triangolo PQR è anch'esso equilatero.
Vi prego è urgentissimo!

Buonasera, mi servirebbe una mano per il seguente esercizio:
Sia $M(R, 2, 2)$ lo spazio vettoriale delle matrici di ordine 2 a coefficienti reali. Si consideri l'endomorfismo f di $M(R, 2, 2)$ che associa ad ogni matrice la sua trasposta.
a) Determinare la matrice A associata ad f relativamente alla base canonica di $M(R, 2, 2)$.
b) Determinare una base per ciascun autospazio di f.
c) Determinare una matrice diagonale D ed una matrice ortogonale invertibile M tali che ...

Bg:2=Gm:1 risolvere e trovare le coordinate nel piano per cortesia potreste aiutarmi..grazie in anticipo!;)
somma algebrica: [math]a/(a^2+ab)+a+b/(ab-b^2)-b/(a^2b-b^3)[/math]
Ho questi due integrali: $int_(-1)^(1) ln(2-x) dx$ che a me risulta: $3ln3-2$, ma le risposte dell'esercizio sono le seguenti:
- $3ln2$;
-$ln4-1$;
-$3-ln2$;
- $ln9-2$;
-Nessuna delle altre risposte.
Nelle risposte dell'esercizio trovo: $ln9-2$, ma come è possibile?
Poi ho quest'altro integrale: $int_(-1)^(1/2) (x-2)/(x^2+2x-3) dx$ che a me risulta: $5/4ln7-2ln2$, ma le risposte dell'esercizio sono le seguenti:
- ...
Ho il seguente esercizio:
Sia data la matrice:
$A=( ( a , 3-a , 8 , 10 ),( 2 , 1-a , 1 , -2a ),( 0 , 1 , 1 , 2 ) ) $, con $a$ parametro reale. Quale delle seguenti asserzioni è VERA?
- $r(A)<=2$ $AAa\epsilonR$;
- Per $a=-3$ $r(A)=2$;
- Non esiste $a\epsilonR$ tale che $r(A)=2$;
- Esiste un numero infinito di valori di $a\epsilonR$ per cui $r(A)=2$;
- Nessuna delle altre risposte.
Ed io per risolverlo faccio questo ragionamento, di cui vi chiedo la ...

Ciao, scusate ma non ne vengo proprio fuori con questo esercizio, ci sono dietro da troppo tempo...allora,
La soluzione del problema di Cauchy
$y'=y^2$
$y(0)=1$
soddisfa:
1)$y(1)=2^(2/3)$
2)$y(2)=3^(1/2)$
3)$y(1/2)=2$
4)$y(1/4)=2^(1/2)$
Allora, dato che $y'(0)=y^(2)(0)=1^2=1$. Dunque la pendenza in $x=0$ è 1, e gia questo è un passo avanti, poi da Pdc so che in $x=0$ $y=1$ allora ho abbozzato un grafico, poi la derivata ...

Ragazzi potreste aiutarmi a risolvere questo problema? io ho in mente più o meno cosa dovrei fare ma non riesco a metterlo in pratica...Il problema é questo: Determinare i vettori di V3 aventi modulo 3, complanari con i vettori u=i+j e v=3j+2k e che formano un angolo di 3/4 di pigreco con il vettore w=i-k.
il risultato é x1=-i+2j+2k e x2=-(27/11)i-(18/11)j+(6/11)k
io ho pensato che per la condizione di essere complanari devo impostare una matrice 3x3 e considerare il caso in cui questa ha ...
Sia X la conica rappresentata dalla seguente equazione:
$ x^2 + y^2 + 2xy -2x + 1 =0$
1. dire che tipo di conica è
considerate i punti A=(1,-1) B=(1,1) C=(1,0)
2. esistino rette per A tangenti a X?
quante?
indicatene almeno una
3.esistino rette per B tangenti a X?
quante?
indicatene almeno una
4.esistino rette per C tangenti a X?
quante?
indicatene almeno una
svolgimento
1. dall'equazione generale delle coniche trovo che $ac-(b^2)=0$ ed infatti $ 1*1-(1^2)=0 $ quindi è una ...
