Matematicamente
Discussioni su temi che riguardano Matematicamente
Domande e risposte
Ordina per
In evidenza
$ root(3)((1-isqrt(3) )^20) $
Qualcuno può aiutarmi con questa radice, non riesco a capire come risolverla. Avevo pensato di fare in questo modo:
$ (1-isqrt(3))^6root(3)((1-isqrt(3))^2) $
e poi risolvere quello sotto radice con le forme solite. Dopo però come potrei risolvere quello portato fuori radice?
Il metodo che ho utilizzato è giusto?
Salve, ho un problema con questo esercizio che mi chiede di stabilire per quali parametri \(\displaystyle K \in \mathbb{R} \) due rette sono complanari, le rette sono:
\(\displaystyle \left\{\begin{matrix}
x+y+2z = 1 & & \\
x-y = 0 & &
\end{matrix}\right. \)
\(\displaystyle \left\{\begin{matrix}
x+y+z = 0 & & \\
3x+y+kz = 1 & &
\end{matrix}\right. \)
Ora, se ciò che ho capito è corretto io dovrei scrivere la matrice completa del sistema a quattro equazioni che viene fuori unendo i ...
Buonasera,
devo fare questo esercizio ma ho un po di dubbi:
Dire se l'ideale $(x^3 − 18x + 12, 5)$ è primo negli anelli $mathbb(Z)[X]$, $mathbb(Q)[X]$ e $mathbb(Z)_3[X]$
Parto con $mathbb(Z)_3[X]$. Considero l'anello quoziente $mathbb(Z)_3[X]//(x^3 − 18x + 12, 5)$ che penso sia isomorfo a $mathbb(Z)[X]//(x^3, 5,3)$. Ora poiché $3$ e $5$ sono coprimi, essi mi generano tutto $mathbb(Z)$ e quindi in sostanza ho $mathbb(Z)_3[X]//(x^3 − 18x + 12, 5) \cong (0)$. Ma l'ideale zero è un dominio?
Considero l'anello ...
Salve ragazzi sto avendo problemi con questa funzione
$ log base 2((|x^2-4|)/(x+8)) $
Il dominio dovrebbe essere da -8 < x< + inf tranne nei punti ( -8 , -2 , 2 )
Ciao a tutti, ho provato a risolvere un'esercizio, non so se l'ho fatto bene quindi perdonatemi se scriverò cazzate!
L'esercizio è il seguente:
Nello spazio vettoriale $ R_3[x] $ dei polinomi di grado al più 3, si stabilisca se il sottoinsieme
$ V: {f(x)= a_0 + a_1x +a_2x^2 +a_3x^3 in R_3[x] : f(0)=f'(0) } $ è o meno un sottospazio.
dove $ f' $ è il polinomio derivato di $ f $.
io ho pensato, se esplicitiamo la condizione $ f(0) = f'(0) $ ci viene una cosa del genere
$ a_0+a_1x+a_2x^2+a_3x^3 = a_1 + 2a_2x + 3a_3x^2 $
che ...
Tale argomento non è stato approfondito alle lezioni ovvero hanno dato qualche definizione e niente di più.
Perché sono stati introdotti? per via del fatto che con i vari quadratini non si riusciva a prendere tutta l'area della funzione e si rischiava di approssimarla di troppo o per difetto o per eccesso?
In più non mi sono molto chiari gli insiemi di misura nulla..
Buon pomeriggio a tutti, vorrei porvi una domanda più qualitativa che quantitativa sulla differenza tra serie e trasformata di Fourier.
Quello che ho studiato a riguardo (omettendo i dettagli) è quanto segue: una funziona periodica, considerata in un certo intervallo, può espandersi in serie di Fourier come somma di seni e coseni moltiplicati per i termini di due successioni calcolate tramite le ben note formule.
Poichè la serie di Fourier è definita soltanto per funzioni periodiche, viene ...
Buongiorno ragazzi, mi potete aiutare in questo problema?
Una palla cade da un'altezza di 9 metri e rimbalza. Ad ogni rimbalzo da un'altezza h, la palla risale ad un'altezza di 2/3h. Trovare lo spazio percorso dalla palla nel suo moto di ascesa e discesa.
Grazie
Buongiorno, vorrei fare una domanda su come si trovano le componenti di una forza impulsiva su di un perno. Di seguito riporto il sistema che vorrei studiare.
Mi si chiede di trovare le componenti dell'impulso in O dove il disco è imperniato, quando un punto materiale di massa $ M $ (la stessa del disco) urta l'asta, di lunghezza $ R $ in B con una velocità diretta verticalmente verso l'alto $ v $ . Per calcolare il modulo ...
Ciao a tutti! Mi sono ritrovato davanti ad un problema di fisica che mi mostrava il grafico di un’onda e non sono riuscito a rispondere al quesito: come si fa a capire se un’onda si propaga in verso negativo o positivo delle x? E quindi stabilire se inserire il segno negativo o positivo nell’equazione generale...me lo potete spiegare? Grazie mille In anticipo
$ y=sqrt(x^2-1) - sqrt(x^2 -2) - sqrt(3-x^2 $ salve a tutti devo fare io dominio di questa funzione chi mi aiuta ecco il mio svolgimento
Buongiorno, devo mostrare che questo limite non esiste:
$lim_{(x,y)->(0,0)} (x^3+y^2x+y^4)/(x+y)$
Ci sto provando da ieri sera ma non trovo nessun "cammino" che non tenda a zero... Se possibile ,oltre a indicarmi lungo quale cammino il limite è diverso da zero (se volete), potreste spiegarmi un minimo il ragionamento seguito per trovarlo? Grazie mille
Salve, vi propongo un esercizio di A.M. 1 sugli insiemi, che tuttavia non sono riuscito a risolvere. Avendo l'insieme $A={[2n+(-1)^n(n^2+1)^(1/2)]/n : n=1,2,3..}$ determinare se ha massimo o minimo. Ho diviso $a_{n}$ in $n$ pari ed $n$ dispari, ottenendo rispettivamente $a_{n} = [2n+sqrt(n^2+1)]/[n]$ ed $a_{n} = [2n-sqrt(n^2+1)]/[n]$ ed ho trovato il $\lim_{n \to \infty}a_{n}$ in entrambi i casi, trovando i due estremi $1$ e $3$ . Dopo di che ho posto $a_{n}<1$ ed ...
$|cosx|=cos3x$
Io ho fatto così
se $-pi/2<=x<=pi/2$
$x=-kpi$ o $x=kpi/2$
Se $pi/2<x<3/2pi$
-cosx=cos3x
Quindi
$cos(pi-x)=cos3x$
$x=pi/4-kpi/2$ o $x=-pi/2+kpi$
Sono giusti? Oppure come si risolve? Grazie
Buongiorno!
Sto preparando l'esame di tecnica delle costruzioni, mi è stato assegnato un esercizio che non riesco a capire, il cui testo dice :
"Determinare il massimo momento flettente positivo sopportabile da una trave in c.a. (R'ck 250, acciaio FeB44k) di sezione rettangolare H=35cm B=150cm, ordita con 15 diametro 20 in doppia armatura"
I dati di cui ho certezza sono le sigma ammissibili del c.a. e dell'acciaio, l'area dei tondini e la dimensione della trave. So che con questi dati ...
Salve a tutti, vorrei sapere se c'è un modo per dimostrare l'equazione della retta passante per un punto e perpendicolare ad un piano che si trova qui:
http://www.****.it/domande-a-rispost ... piano.html
Problema solidi (248549)
Miglior risposta
una scultura di cristallo(ps 2,5) ha la forma di un prisma regolare pentagonale.l'altezza del prisma misura 18 dm e l'area laterale è 1350 dm quadrati.calcola l'area totale e il peso del solido
Ciao a tutti,
sto preparando l'esame di Algebra e geometria e sto facendo gli esercizi svolti messi a disposizione sulle dispense.
Mi sono ritrovato davanti questo esercizio:
Sia $T = {(x, y, z) in RR^3 : x+y=0=2y+z}$
Determinare la proiezione ortogonale del vettore u = (1, 0, -1) su T
Per risolverlo ho inizialmente trovato la base di T, che è B=(1, -1, 2) e da qui ho applicato la formula per la proiezione ortogonale che conoscevo (e che è spiegata nelle dispense).
$(<u, b>)b$
con che è il prodotto ...
Ciao a tutti, vi propongo questo mio dubbio sugli studi qualitativi di equazioni differenziali nella speranza che riusciate ad aiutarmi a capire cosa non mi è chiaro.
Suppongo di avere un'equazione differenziale scalare \(\displaystyle y'=f(t,y) \), con \(\displaystyle f \) continua, localmente lipschitziana in \(\displaystyle y \) ecc.
Suppongo che \(\displaystyle y=k \) sia soluzione banale dell'equazione, che ad esempio con \(\displaystyle t>0 \) e \(\displaystyle y>k \) \(\displaystyle f \) ...