Matematicamente
Discussioni su temi che riguardano Matematicamente
Domande e risposte
Ordina per
In evidenza
Continuità della funzione in un intervallo
Miglior risposta
Ciao, come faccio ad essere certo che una funzione f(x) sia continua in un intervallo [x1,x2] e che allo stesso tempo sia anche derivabile nell'intervallo (x1,x2)
Grazie 1000 a chi mi risponderà
Ciao e buona serata!!
Un tubo ad U viene riempito d'acqua fino ad altezza h=28 cm. Dell'olio che ha densità relativa di di 0.78 viene immesso in un braccio del tubo fino a che l'acqua non raggiunge h=34 cm. Trovare i livelli di interfaccia acqua- olio e olio-aria.
Come lo imposto? Grazie.
Ciao ragazzi,
mi servirebbe un aiuto sul comprendere se una funzione f(x)=1/x sia continua o meno.
Mi spiego meglio: il mio libro prende la funzione come esempio per speigare la continuità, ma non è chiarissimo, infatti dice "la funzione in esame è continua nel suo dominio per il teorema del quoziente e per la risaputa continuità della funzione costante e identità" e fin qui ci sono, però poco dopo dice "per x=0 la funzione ha un punto di discontinuitàdi seconda specie".
Ora mi chiedo, ma se ...
Salve a tutti, sto ora studiando gli sviluppi e mi interesserebbe capire come poterli utilizzare per fare quanto detto nel titolo del post
Mi sorgono vari dubbi:
Data la formula di Taylor e considerando $f(x) = sqrt(1+x)$ e $x=1$ mi trovo in difficoltà sin da subito, dato che il primo termine dello sviluppo è $sqrt(2)$ di nuovo, quindi il mio approccio è palesemente errato.Inoltre l'altro dubbio è che, già dal secondo termine inizio a trovarmi i termini moltiplicati per ...
Ciao a tutti!
Avrei bisogno di sapere come si effettua il confronto nel caso di questo limite con X che tende a meno infinito. •Quali sono i fattori che devo confrontare e perché?
•I segni devono essere presi in considerazione nel confronto?
•Nel caso tendesse a +infinito, come sarebbe?
buonasera a tutti, ho appena iniziato a studiare fisica a scuola e questa settimana abbiamo fatto l’accellerazione gravitazionale. Per quello che ho letto se non sbaglio è possibile calcolare la velocità di caduta di un corpo con v=gt volevo sapere se sapendo solamente la massa di un corpo e lo spazio che dovrà percorrere è possibile conoscere il tempo e la velocità di caduta.
grazie mille in anticipo
Ciao a tutti, sto sviluppando in questi giorni(per un esame) un progetto di SO usando il linguaggio C in ambiente Unix.
In tale progetto un processo gestore deve creare n processi figli e gestirli(devono fare varie cose ma questo non centra con il mio problema), [size=150]ucciderne uno a random ogni s secondi e terminare il tutto dopo time secondi[/size], uccidendo quelli ancora vivi.
Ora, il mio unico problema sta appunto nella gestione delle kill, l'idea migliore che mi sia venuta finora è ...
Salve, Consideriamo questi due limiti di successione:
\(\displaystyle lim_{n->+\infty} {\space ln(n)[1-cos({1\over{ln(n!)}})]} \)
\(\displaystyle lim_{n->+\infty} {\space n^3sin({1 \over ln(n!)})[e^{{1 \over ln(n!)}}-1]} \)
Svolgendo i limiti si arriva a:
\(\displaystyle 2lim_{n->+\infty} { {ln(n) \over (ln(n!))^2} } \)
\(\displaystyle lim_{n->+\infty} { {n^3 \over (ln(n!))^2} } \)
Il professore mi ha spiegato che a questo punto, ci si deve rifare alla seguente stima, dimostrata a ...
Aldo, Bruno e Carlo giocano a carte. Due di loro giocano contro, l'altro sfiderà il vincitore.
Alla fine, Aldo avrà giocato 17 partite e Bruno 23.
Qual è il numero minimo di partite che può aver giocato Carlo?
Ciao, non si fosse capito dai miei vari messaggi mi sto avvicinando ad un esame.
Esercizio: Il motore di un’automobile non eroga potenza quando l’auto è ferma. La potenza cresce linearmente con la velocità fino a raggiungere il valore massimo di 100 kW quando ha una velocità pari a 50 m/s. Considerando l’auto come un punto materiale di massa m=1500 kg e l’attrito dell’aria F=−y V con y=40, calcolare il tempo necessario all’auto per raggiungere la velocità di 100 km/h (27,7m/s) partendo da ...
Buongiorno, stavo eseguendo una prova d'esame e non riesco a trovarne l'errore. Mi chiede di creare una funzione ricorsiva che prenda in input una stringa e la converta in una lista sequenziale. La lista è composta da char della lettera, un int che indica quante volte la lettera si ripete ed ipotizzo anche il numero di elementi nella lista. Per esempio se la stringa è "ordini" la lista avrà 5 elementi
= o,1 r,1 d,1 i,2 n,1. Spero di essermi spiegato; cmq se compilo ed eseguo mi viene il ...
Ciao a tutti! Ho un problema, non riesco a capire bene come ricavare il versore normale di una superficie e come parametrizzare una superficie. Per esempio se ho un paraboloide di equazione $z=x^2+y^2$ con z che varia da 0 a 4, dovrei parametrizzarla usando il seno e il coseno giusto? Ma come esattamente?
Inoltre dopo aver parametrizzato la superficie, sarei in grado di calcolarmi il versore normale?
Salve a tutti! non riesco a risolvere questi 2 esercizi di preparazione all'esame di logica. Qualcuno potrebbe aiutarmi per favore?
Esercizio 1:
Dato un linguaggio del prim'ordine \(\displaystyle L\) con simbolo funzionale binario \(\displaystyle f \) ed un simbolo di costante \(\displaystyle a \), dimostrare per induzione che per ogni \(\displaystyle n > 0 \) esiste un termine \(\displaystyle L \) che contine \(\displaystyle 2n \) occorrenze del simbolo \(\displaystyle a \)
Esercizio ...
Ho il seguente esercizio:
"Sia $f: K ->L$ un omomorfismo di campi, dimostrare che $car(K)=car(L)$"
Io pensato di risolverlo in questo modo ma non so se e' corretto.
Se io considero l'omomorfismo $g:ZZ ->K$ e considero il suo ker e ho due possibilita':
$ker(g)={e}$ quindi $car(K)=0$
$ker(g)=p$ quindi $car(K)=p$
a questo punto considero la concatenazione di omomorfismi $ZZ -> K -> L$
Nel primo caso, ovvero $ker(g)={e}$, ho che il neutro in ...
Ciao,
Devo risolvere questo limite:
$lim_(xto0^+)(xsqrt(x)-x^3)/(senx^2+3xsqrt(senx))$
Da risolvere con il confronto tra infinitesimi.
Al numeratore ho messo in evidenza $sqrtx$, al denominatore non saprei cosa fare.
Grazie.
Salve, volevo avere un chiarimento sulla serie $\sum_{n=1}^oo [log(1+e^(\alphan))]/[n^2]$ . Devo trovare il valore di $\alpha$ per il quale essa converga, dopo aver usato il criterio del rapporto ottengo $[log(1+e^(\alphan+\alpha))]/[log(1+e^(\alphan))]$ e quindi per convergere basta avere $\alpha < 0$ ma la risposta giusta è invece $\alpha <= 0$ e non capisco come mai. Mi potete aiutare ?
Salve, non riesco a trovare il valore $a$ per il quale l'integrale $\int_{1}^{2} [(e^x-e)^(a)]/[x^3-1] dx$ converge. Ho scritto: per $x rarr 1$ $[(e^x-e)^(a)]/[x^3-1] ~= 0/0$ rispettivamente di grado $a$ al numeratore ed $1$ al denominatore. Poiché voglio che converga devo avere $a<1$ ma la risposta giusta, secondo quanto riportato sulla prova è $a>0$ ma non capisco come mai. Potete aiutarmi ?
Ciao a tutti, ho un problema nel capire cosa avviene quando si annulla l'hessiano in un punto stazionario. Ad esempio, ho la funzione $f: RR^2 rarr RR$ definita da $f(x,y)=x^2ye^(-(x^2+y)$.
Posto $nablaf(x,y)=0$ trovo come soluzioni i seguenti punti: $A=(0, y_0)$, $B=(0,0)$, $C=(1,1)$, $D=(-1,1)$. La matrice hessiana della funzione, secondo i miei conti (ammesso e non concesso che siano esatti), è questa:
$H(x,y)=((e^-(x^2+y)(2x^4-2x^3-3x^2+1), 2x(1-x^2)(e^-(x^2+y)-ye^-(x^2+y))),(2x(1-x^2)(e^-(x^2+y)-ye^-(x^2+y)), -x^2e^-(x^2+y)(2-y)))$
Quindi, valutandola nei vari punti, trovo che ...
Ciao,
Dove sbaglio in questo esercizio? Da risolvere con i limiti notevoli.
$lim_(xto+infty)(ln(x+2))/(ln(x+1))$
$lim_(xto+infty)(ln(x+2))/(ln(x+1))=lim_(xto+infty)(ln(x(1+2/x)))/(ln(x(1+1/x)))=lim_(xto+infty)(lnx+ln(1+2/x))/(lnx+ln(1+1/x))=lim_(xto+infty)(2/x(lnx+ln(1+2/x)))/(2/x(lnx+ln(1+1/x)))$
Poi sfrutto il limite notevole del logaritmo ma resta la forma $[infty/infty]$