Matematicamente
Discussioni su temi che riguardano Matematicamente
Domande e risposte
Ordina per
In evidenza
Ciao, mi sono imbattuto in una strana definizione di polinomio interpolante (strana per me perché non riesco a "decifrarla", ma magari è famosissima). Il problema principale è che la definizione, con tanto di proprietà viene fornita senza alcuna spiegazione e tantomeno senza un nome da poter cercare. Se qualcuno la riconosce e potesse darmi qualche riferimento per capire un po' meglio gliene sarei davvero grato.
Piccola precisazione sulla notazione (da quello che ho capito):
- ho ...
Una sferetta di carica q e massa m è sospesa tramite una fune ed è soggetta ad un campo elettrico uniforme E (vedi figura). In queste condizioni, il pendolo è in equilibrio quando la fune forma un angolo =30° con la verticale. Sapendo che q=-2 mC, m=50 g, trovate: a) il valore del campo elettrico E; b) la tensione della fune.
Potreste spiegarmi come approcciarmi a questo problema?
L'unico tentativo avanzato per lo svolgimento è stata la scomposizione della forza peso che ...
Salve, non riesco a completare il seguente esercizio :
Trovare due sottospazi di R^5 tali che la dimU=dimW=3 e R^5=U+W
Ho trovato i due seguenti sottospazi di dimensione 3 :
U={(a,b,c,d,e) appartenente ad R^5 : d=0, e=0 }
W={(a,b,c,d,e) appartenente ad R^5 : a=0, b=0}
Poi per la relazione di Grassman ho imposto che :
dim(U+W)= 6 - dim(U intersezione W)
Risulta che 3
Ciao a tutti, ho il seguente esercizio:
Mi viene fornita una curva (illimitata) data dall’intersezione di $9z^2-16xy=0$ e $x^2-y=0$.
Una volta definita la curva (limitata) data dall’intersezione tra la curva precedente e ${(x,y,z) t.c. x>=0, x<=1, y>=0, y<=1}$
Se ne calcoli la lunghezza.
Allora io ho prima di tutto considerato la prima intersezione, ho quindi un sistema con due equazioni [tex]\begin{cases}
9z^2-16xy &= 0 \\
x^2-y &= 0
\end{cases}[/tex]
Che diventa
[tex]\begin{cases}
z&= \pm ...
Su una sfera isolante, di raggio $R_0$, è depositata una carica con densità di carica uniforme $ρ_0$.
Determinare la differenza di potenziale tra il punto $A$ che si trova a distanza $R_1$ dal centro, e il punto $B$ che giace sulla superficie della sfera.
Allora, per la legge di Gauss, il campo in $A$ sarà $E_A=\rho_0R_1/(3\epsilon_0)$, mentre in $B$ sarà $E_B=\rho_0R_0/(3\epsilon_0)$. Ho dei dubbi sulla ...
Salve a tutti,non riesco a svolgere questa serie
$ sum^(N = oo \) (n^(2q)-n)^(1/4) -sqrt(n^q) $
Devo trovare il parametro a affinché la serie converge , non so proprio da dove iniziare
Una spira a forma di triangolo equilatero di lato $L=10cm$ è costituita da un filo conduttore con una sezione di $2mm^2$ e una resistività$ρ=50 nΩm$.
La spira è immersa in un campo magnetico variabile nel tempo ortogonale al piano della spira.
Sapendo che $B(t)=sin(t)+2t^3−1 T$, ($T$ è tesla) calcolare come varia nel tempo l’intensità della corrente che circola nella spira.
Ora ovviamente la f.e.m. indotta per la legge di Faraday sarà $\xi_i=(-cos(t)-6t^2)(2*10^-6) V$. Ora ...
Salve a tutti, devo dimostrae che B=A+(1-i)I è invertibile.
A: ( la dimensione di A sarebbe n*n ma per semplicità l'ho semplificata cosi)
0 -1 0 0
-1 0 -1 0
0 -1 0 -1
0 0 -1 0
io sono partito con il dire che A è hermitiano quindi gli autovalori da sono reali, poi so che:
Ix=x
Ax=λx
Bx=(A+81-i)I)x =>Ax+(1-i)Ix => x(λ+1-i)
x(λ+1-i) questo è autolavore di B e se x(λ+1-i) diverso da zero è B è invertibile
Im=-1. λ appartiene ai reali quindi λ +1 appartiene ai reali, quindi B è ...
Ciao a tutti,
Sto affrontando questo esercizio di Probabilità da cui non riesco a venirne a capo.
Sia $(X_n)_{n\geq 1}$ una successione di variabili aleatorie con funzione di ripartizione F:
$$ F(x) = (1-x^{-\alpha}) \mathbb{1}[1,\infty](x) $$
Considero $\alpha > 0$. Sia $M_n = max_{1\leq m \leq n}X_m$, allora la funzione di ripartizione di $M_n$ è:
$$ F_n(x) = (1-x^{-\alpha})^n \mathbb{1}[1,\infty](x) $$
Voglio studiare la ...
La traccia è la seguente:
$ int (2x+6)/(x^2+5x+7)dx $
Verifico il Delta: $Delta=5^2-4(1)(7)=-3 $
Riscrivo l'integrale come:
$int (2x)/(x^2+5x+7)dx+int(6)/(x^2+5x+7)dx$
E mi riporto a $int (f(x)')/f(x)dx=ln|f(x)| $ e $int 1/((a+b)^2+m^2)dx=1/m*arctg((a+b)/m)$
Quindi:
Sommo e sottraggo 5 al numeratore del primo integrale
$int (2x+5-5)/(x^2+5x+7)dx+int(6)/(x^2+5x+7)dx$
$int (2x+5)/(x^2+5x+7)dx-int 5/(x^2+5x+7)dx+int(6)/(x^2+5x+7)dx$
$int (2x+5)/(x^2+5x+7)dx+int(1)/(x^2+5x+7)dx$
$b^2/(4a^2)=5^2/(4(1))=25/4 $
Sommo e sottraggo questa quantità al denominatore del secondo integrale
$x^2+5x+7+25/4-25/4$ lo ricompatto in un quadrato di binomio come ...
Salve ho un grosso problema con excel: non riesco a ricavare la retta tangente ad un grafico in un punto ben preciso. Mi spiego meglio: sto facendo i grafici sforzo-deformazione delle prove di geotecnica (sforzo su asse y, deformazione su asse x) e ho bisogno dell'angolo della retta tangente al grafico della curva sforzo-deformazione nel punto sull'asse y pari al 50% del valore massimo. Solo che non so davvero come farla questa tangente, né come ricavare il grafico: qualcuno mi può aiutare ...
Ciao, avrei questo limite da calcolare:
$lim_((x,y) -> (0,0)) (sin(x-y)-(x-y))/(x^2+y^2)^a$
con $a$ reale positivo.
Ora io sono passato a polari e usato Taylor (me lo ricordava molto la forma sint-t) trovando che fa zero per $a<\frac{3}{2}$, è giusto o è una cavolata?
Salve,
volevo chiedervi aiuto per un esercizio che, probabilmente sarà banale, ma non riesco a capire come procedere nel modo corretto.
"Su un blocco di massa m=3 kg appoggiato su un piano orizzontale scabro, è applicata una forza F inclinata di un angolo di $ vartheta $ =30° rispetto all'orizzontale. Conoscendo i coefficienti di attrito statico e dinamico $ mu s $ =0.5 e $ mu d $ =0.3 determinare:
1) valore Fmin del modulo della forza per mettere in moto il corpo
2) ...
$ int_(3)^(4) (x)/((x-2)(x^2+1)) dx $
ho provato a fare così
$ (x)/((x-2)(x^2+2))=(A)/(x-2)+(Bx+c)/(x^2+1 $
$ (A(x^2+1)+(Bx+C)(x-2))/((x-2)(x^2+1) $
$ (Ax^2+A+Bx^2-2Bx+Cx-2C)/((x-2)(x^2+1) $
$ ((A+B)x^2+(C-2B)x+A-2C)/((x-2)(x^2+1) $
Ma non so se sto facendo bene o errando il tutto
Salve a tutti!
Sono nuovo del forum, e, per quanto ci abbia provato, non riesco a venire a capo di questo integrale:
[tex]\int_0^{+\infty}{\frac{\sqrt[3]{x}}{(x^2+4)^2}dx}[/tex]
da risolvere con metodi di analisi complessa.
Dato che la radice terza è una funzione polidroma in campo complesso, ho scelto come sua determinazione:
[tex]\sqrt[3]{z}=(re^{i\theta})^{\frac{1}{3}}=r^{\frac{1}{3}}e^{i\frac{\theta}{3}}\quad \text{con}\quad 0
Salve, dovrei calcolare il dominio della seguente funzione:
\(\displaystyle \frac{1}{\sqrt{log (x+3)}} \)
Devo quindi imporre:
- denominatore frazione diverso da zero
- argomento della radice maggiore di zero
- argomento del logaritmo maggiore di zero
In formule:
\(\displaystyle \sqrt{log(x+3)} \neq 0 \)
\(\displaystyle log (x+3) > 0 \)
\(\displaystyle x+3 > 0 \)
Le due disuguaglianze sono abbastanza semplici e mi portano rispettivamente a
\(\displaystyle x > -2 \)
\(\displaystyle x > -3 ...
Salve!
Studiando i cicli frigoriferi, mi è venuto il seguente dubbio...
In generale io so che il ciclo frigorifero opera tra due sorgenti e preleva calore da una e cede calore all’altra con del lavoro fornito dall’esterno. In genere la temperatura del serbatoio da cui assorbo calore (ambiente da raffreddare) è a temperatura minore di quella del serbatoio a cui cedo calore.
Ma è possibile realizzare un ciclo frigorifero che mi raffredda un ambiente che ha una temperatura più calda di quella ...
Un cilindro omogeneo di massa M1=5kg è poggiato su un piano inclinato di 30° sopra l’orizzontale e collegato tramite una fune inestensibile applicata al suo centro ad un altro oggetto di massa M2=2kgche è tenuto appeso. Sapendo che la fune passa sopra una carrucola ideale, che il cilindro rotola sul piano inclinato e che il suo raggio è R=20cm, determinare la forza di attrito sul cilindro e la sua accelerazione.
Salve a tutti non riesco a svolgere questo integrale
$ int_(2 )^(+oo) (x^2-4)^-a(2ln(1+sqrtx)-lnx) dx $
Devo trovare a affinché l'integrale converge
Al numeratore però, noto che per $ x-->oo $ ottengo $ 2lnsqrt(x)-lnx $che è uguale a 0.Mi si annulla tutto come posso procedere?
Mostra che le ascisse dei punti in cui la tangente al grafico è perpendicolare alla retta $y=5x$ sono soluzioni per $x^3-5x-30=0$
$y=(x+3)/x^2$
Ho provato a risolvere questo esercizio e sono riuscito a trovare i valori di $a$ e $b$ cioè rispettivamente $a=1$ e b$b=3$.
Ora però non riesco a risolvere la seconda richiesta...
Ho posto la tangente come $y=(-1/5)x+q$
Però poi non so più come fare... perché se pongo ...