Geometria e Algebra Lineare
Discussioni su problemi, esercizi e teoremi che riguardano la geometria, l'algebra lineare e la topologia
Domande e risposte
Ordina per
In evidenza
Conoscete per caso una dimostrazione della paracompattezza degli spazi metrici separabili?
So che ogni spazio metrico è paracompatto ma la dimostrazione è abbastanza difficile, volevo sapere se per gli spazi separabili ce ne fosse una particolarmente più semplice. Anche perché mi sembra di aver letto che nell'articolo in cui ha introdotto la paracompattezza, Dieudonnè avesse dimostrato proprio questa cosa, lasciando aperto il caso generale, ma non saprei come consultare quell'articolo e non so ...
Ciao!
Ho il seguente esercizio:
sia $f:X->Y$ una funzione
$•$ Se è continua allora $Gamma_f$ è omeomorfo a $X$
$•$ Se $Y$ è T2 allora $Gamma_f$ è chiuso nella topologia prodotto
primo punto
Prendiamo la funzione $g:X->Gamma_f$ definita come $g(x)=(x,f(x))$
Banalmente è iniettiva e surietta inoltre è continua poiché le componenti lo sono(la funzione identità è banalmente continua).
Ora basta mostrare che ...
Ciao!
Devo risolvere questo esercizio e mi inghippo alla fine
sia $(X,T)$ uno spazio topologico a base numerabile.
Se $F$ è un ricoprimento aperto allora esiste un sottoricoprimento numerabile
Posto $B={B_i, i in NN}$ una base numerabile.
Sono partito applicando due volte l’assioma della scelta
1. Posso trovare una applicazione $A:X->F$ per cui $x in A(x), forallx inX$
2. Posso trovare una applicazione $i:X->NN$ per cui $x in B_(i(x))subsetA(x)$
Risulta evidente ...
salve,
mi è stato introdotto questo concetto: https://it.wikipedia.org/wiki/Spazio_ta ... elle_curve
in particolare mi sono bloccato sull'affermazione: "La tangenza tra curve è una relazione di equivalenza; le classi di equivalenza sono chiamate vettori tangenti"
Ma la classe di equivalenza non è $[\gamma]$? Mi pare che la classe suddetta siano curve, mentre intuitivamente il vettore tangente mi sembrerebbe essere la sua derivata. Quindi come faccio a dire che la classe di equivalenza sono i vettori tangenti se ...
Ciao. Mi sono un attimo bloccato su questa cosa. Sia \( X \) uno spazio e \( A\subset X \). Per chiusura \( \operatorname{cl} A \) di \( A \) intendo (finalmente, perché è più comodo) il più piccolo chiuso contenente \( A \), e similmente do l'interno \( \operatorname{int} A \). Definisco inoltre la frontiera \( \partial A \) come \( X\setminus\left(\operatorname{int} A\cup\operatorname{ext} A\right) \), dove \( \operatorname{ext} A \) denota l'esterno \( X\setminus\operatorname{cl} A \) di \( ...
Ho un dubbio sull'esercizio guida del libro.
La traccia chiede di trovare una base per la matrice A.
Affronta il problema dapprima calcolandone il rango, dunque trasforma la matrice A in una più gestibile matrice triangolare A' tramite trasformazioni elementari.
In questo modo è facile vedere che il suo rango è 4, e fin qui ci siamo.
Adesso, tornando alla richiesta iniziale, mi deve trovare una base per A, e come base sceglie l'insieme di tutte le righe della matrice A' , giustificandosi con ...
Il seguente esercizio l'ho risolto quasi completamente e ho comparato il modo in cui ho fatto io con le soluzioni, ci sono alcuni dettagli che non mi sono chiarissimi e mi piacerebbe comprendere bene, l'enunciato dell'esercizio è lungo ma non sono molte le mie domande, 2 e suppongo brevi, in più il punto 8 avendolo fatto in modo diverso dalle soluzioni mi domandavo se era corretto.
Sia il gruppo \( \operatorname{SL}_2(\mathbb{R})=\{ \begin{pmatrix}
a &b \\
c& d
\end{pmatrix}, a,b,c,d \in ...
1
Studente Anonimo
27 apr 2019, 03:22
Ciao a tutti, posto in merito ad un dubbio su un esercizio:
"Sia V un sottospazio vettoriale di dimensione 3 in \( \Bbb{R}^5\) . Qual'è la dimensione del più piccolo sottospazio vettoriale in \( \Bbb{R}^5\) contenente \( \Bbb{R}^5\) \ V?"
Per risolverlo ho ipotizzato come generatori di \( \Bbb{R}^5\) le basi canoniche, e V = < (1,1,0,1,0), (0,0,0,0,1), (0,0,1,0,0) >. Ho pensato che siccome V deve contenere minimo uno e massimo due basi canoniche nei generatori, il risultato dell'esercizio sia ...
Ciao a tutti.
Vi illustro il seguente esercizio con cui ho diversi problemi. Il testo è il seguente :
Si consideri lo spazio delle funzioni continue su [0,1], cioè : $ C^0 (text([)0,1text(]))= \{ f : [0;1]->R, f text( continua) \} $
munito della distanza indotta dalla norma infinito su [0,1].
Dimostrare che lo spazio non è localmente compatto.
Ora il problema è che il suggerimento è quello di utilizzare una successione di polinomi di norma 1 da cui non si può estrarre una sottosuccessione uniformemente convergente. Ma anche ammesso ...
Ciao,
ho un problema riguardo la dimostrazione di una proposizione che serve a dimostrare l'esistenza delle basi.
Proposizione:
Sia $S$ una matrice a scala di tipo $mxxn$ e rango $r$. Siano $s_1, ... , s_r$ i suoi vettori riga non nulli e siano $s^{j_1}, ... , s^{j_r}$ i suoi vettori colonna corrispondenti ai pivots. Allora:
a) $s_1, ... , s_r$ sono linearmente indipendenti e formano una base per lo spazio generato dai vettori riga di $S$;
b) ...
Salve ragazzi , cercavo una "scorciatoia" per calcolare gli assi e gli asintoti di una conica.In particolar modo se ho una conica di equazione 2xy +4x -4y +1 =0 , avrà come assi :
[1] le due rette x + y + 2 = 0 e x − y = 0
[2] le due rette x = 2 e y = −2
[3] le due rette x + y − 2 = 0 e x − y + 2 = 0
[4] le due rette x + y = 0 e x − y − 4 = 0
Tra queste 4 risposte ,una è corretta (la 4), come faccio a verificare che l'asse sia quello senza fare "particolari" calcoli?Come posso sfruttare le ...
Ciao, sono un po' perplesso dal punto b)
Sia \( V= \mathbb{R}^n \), e \( \left \langle \cdot, \cdot \right \rangle \) il prodotto scalare standard, \( \{ b_1, \ldots, b_n \} \) una base di \( V \) e \( \{ b_{1}^{\star}, \ldots, b_{n}^{\star} \} \), la base ortogonale di \( V \) ottenuta a partire da \( \{ b_1, \ldots, b_n \} \) applicando la procedura di ortogonalizzazione di Gram-Schmidt. Siano ora
\( B= ( b_1 \ldots b_n ) \in \mathbb{R}^{n \times n } \) e \( B^{\star} = ( b_{1}^{\star} ...
3
Studente Anonimo
24 apr 2019, 14:21
Salve a tutti. Ho postato questa domanda perchè non sono pratico di sistemi formali di assiomi. Leggendo i fondamenti di geometria di hilbert mi piacerebbe ricavare tutti i risultati della geometria euclidea usando i metodi di geometria sintetica. Mi sono incappato in un punto, magari un bruscolino. Tuttavia non riesco a venirne in fuori. Il problema è quello di definire i multipli di un segmento. Dagli assiomi di congrenza potremmo dire:
1) $OQ\equiv AB$ è multiplo di $AB$
2) ...
ciao a tutti .
c'è qualcuno che mi può dare una mano sulla seguente cosa ? :
come si fa ad avvolgere a spirale una tromba iperbolica ?
nel mio caso non una tromba intera ma solo metà .allego immagine per capirci meglio (il disegno l'ho fatto a mano e serve solo per farmi capire).
deve essere avvolta su se stessa in modo da formare un elicoide tipo questo :
per il primo giro di avvolgimento non c'è problema ma il problema arriva quando inizia la seconda spira .
Ciao a tutti, devo inserire nella mia tesi di laurea in matematica finanziaria un'applicazione dell'analisi delle componenti principali. La tesi è incentrata principalmente sulle teoria di portafogli, mi è stato suggerito dalla professoressa di scaricare da yahoo finance, i dati storici di 14 titoli, calcolare i rendimenti (cosa ho fatto con excel) e fare l'ACP tramite Matlab trovando autovalori, autovettori e variabilità spiegata.
Non saprei però come procedere, l'ACP devo farla utilizzando i ...
Buondì, stavo leggendo le prime pagine dell'abate (geometria) e viene presentata a livello intuitivo quella che è la forma paramentrica della retta.
Quel che mi piacerebbe chiedervi è la conferma se potrei anche usare la 2.5 (cioè in modo esplicito: $OP=OP_0+t(OP-OP_0)$) anche nella forma: $OP'=OP+t(OP-OP_0)$ cioè anziché sommare $OP_0$ ad $t(OP-OP_0)$ sommo OP con $P$ punto (x,y) qualsiasi che varia e non è fisso come $P_0=(x_0,y_0)$.
Ancora una ...
Ciao. Devo disegnare, fissati due vettori \( v \) e \( w \) di \( \mathbb{R}^2 \) visto come lo spazio euclideo solito, non entrambi nulli:
1) l'insieme delle combinazioni lineari a coefficienti positivi di \( v \) e \( w \);
2) l'insieme delle combinazioni lineari di \( v \) e \( w \) con i coefficienti che sommano a \( 1 \) (ossia, gli \( \alpha v+\beta w \) tali che \( \alpha+\beta=1 \));
3) l'insieme degli \( \alpha v+\beta w \) con \( \alpha \) e \( \beta \) nell'intervallo \( ...
Buonasera,
sto ripassando le proprietà sui i sottospazi generati, mi è venuto un dubbio:
se ho due sistemi di vettori $A,B$ tali che $A={v_1,v_2,v_3}$, $B={v_1,v_2}$ si ha $B subset A$, è possibile $[A] subset <strong>$ ?
A primo impatto direi di no, ma ragionando in questo modo, cioè:
se suppongo che $x$ sia combinazione lineare dei vettori di $B$, quindi $x in <strong>$, potrei aggiungere a tale combinazione lineare il vettore ...
Ciao a tutti
Potreste dirmi qual'è (se esiste) il significato geometrico della diseducazione di Cauchy-Schwarz?
$|u*v| \<= |u|^2*|v|^2$
$u,v \in V$
Grazie
Buongiorno,
ho il seguente dubbio,
siano $mathbb{R^3}=V$, ed $v_1=(3,1,0),v_2=(-1,-1,0),v_3=(1,0,0)$ appartente a $V$, inoltre, considero i sistemi di vettori $A={v_1,v_2}$ e $B={v_1,v_2,v_3}$.
Devo dimostrare che lo $Span(A)=Span(B)$.
Procedo cosi: dimostro prima che un vettore del sistema è combinazione lineare dei rimanenti, in particolare, i vettori $v_1,v_2$ sono linearmente indipendenti, quindi, deve risultare che $v_3=av_1+bv_2$, cioè, $a=b=1/2.$
Ora mi chiedo, per ...