Analisi matematica di base
Quando all'Università i problemi con la matematica tolgono il sonno, cerca aiuto qui
Domande e risposte
Ordina per
In evidenza

Buon pomeriggio.
Sto cercando di rifare degli esercizi svolti sul calcolo del polinomio di Taylor, in particolare modo della funzione arcotangente.
Mi sono imbattuto in un esercizio che non riesco a risolvere: il primo punto chiede il polinomio di Taylor-MacLaurin di ordine 3 della funzione $f(x)=arctan(x)$ e giustamente $P(x)=x-1/3 x^3 $.
Successivamente chiede il polinomio di Taylor-MacLaurin di $f(x)=arctan(x^3-x^2)$ e lo risolve mediante questo ...

Salve ho un dubbio sulle ipotesi del criterio di Leibnitz,abbiamo la seguente serie:
$ sum_(n =1)^(∞) (-1)^(n)(n^5+56)/(n^4+8) $
Notiamo che : $ lim_(x ->+ ∞) (n^5+56)/(n^4+8)!= 0 $
Mi basterebbe dire che non è rispettata la prima ipotesi del criterio di Leibnitz per affermare che la serie è indeterminata?
Se una delle tre ipotesi non è rispettata,mi posso fermare?
Grazie in anticipo!

Come si ricava la formula generica della derivata seconda di una funzione del tipo $f(g(t),h(t))$?
Dimostrazione
Miglior risposta
Devo dimostrare che ad esempio 3^2=1+1+2+2+3+3+3-(3x2) e tutto ciò valga per tutti i numeri Naturali.

Ciao ragazzi.
Ho una necessità, e vorrei capire come calcolarla.
Ho un determinato numero di voti, x positivi e x negativi, il numero dei voti è variabile e ogni voto vale 1. Da questi voti devo calcolarmi un valore che va da +100 (voti tutti positivi) a -100 (voti tutti negativi).
Quale formula usare? come calcolarmi il valore?
esempio ho 83 voti, 13 positivi e 70 negativi, che valore avrà in un range che va da +100 -100? (ovviamente sarà negativo)
grazie

Ciao a tutti, premetto che non ho ancora studiato le curve, nè come si calcoli la lunghezza di una curva, tuttavia ho necessità di calcolare la lunghezza della seguente curva definita implicitamente dalla condizione:
$|x|^(2/5)+2|y|^(2/5)=1$
lungo tutto $\mathbb{R}$
Mi basta anche solo l'impostazione con l'integrale, dato che poi il calcolo dovrò farlo con Octave.
Grazie mille per l'aiuto
Mi trovo a dover calcolare degli integrali in questa forma:
\[
I=\int_0^1 \int_0^1 \frac{\partial^2f}{\partial u\partial v}(u, v)\, f(u,v)\, dudv, \]
dove \(f\colon\mathbb R^2\to \mathbb R\) è una funzione di classe \(C^\infty\). Mi piacerebbe esprimere \(I\) in funzione dei valori di \(f\) sul bordo di \([0,1]\times[0,1]\) integrando per parti e sfruttando la struttura della funzione integranda, come nell'esempio giocattolo (il "vecchio trucco"):
\[
J=\int_0^1 f(x)\frac{df}{dx}(x)\, dx = ...

Ciao a tutti. Oggi mentre studiavo analisi mi é sorto un dubbio. Volevo dimostrare che condizione necessaria affinché l'integrale di una funzione su una semiretta $[a,+\infty)$ converga è che:
$\lim_{x\to +\infty}f (x)=0 $
Nel fare una dimostrazione mi é sorto un dubbio, supponendo che esistano finiti i limiti di $f (x)$ e della sua derivata per $x\to+\infty $ con $f\in C^{1}([a,+\infty)) $ é lecito affermare che
$se$ $\lim_{x\to +\infty}f (x)=L \rightarrow \lim_{x\to +\infty}f' (x)=0$
?
E in caso affermativo, come lo si ...

Buonasera, non riesco a capire come risolvere il seguente esercizio.
Sia $ B={(x,y):x^2+y^2<= R^2} $ il vincolo. Trovare la funzione $ uin C^2(B) $ tale che:
\( \begin{cases} -\bigtriangleup u=1 \\ u=0 \end{cases} \)
dove la prima equazione del sistema deve essere vera in B mentre la seconda sulla frontiera di B.
Per tentativi ho trovato le seguenti funzioni a simmetria radiale che soddisfano le condizioni.
$ (-(x^2+y^2)^(n/2)+R^n)/n^2 $
Inoltre volevo chiedervi, che legame c'è tra questo tipo di ...
Salve ragazzi, la mia domanda può essere stupida ma davvero non ne vengo a capo. Ho di fronte quest'esercizio:
$ yy''+yy'+(y')^2=0 $
Ora nello svolgimento vedo applicare 2 tipi di sostituzioni:
La prima dopo aver diviso per y $ (y')/y=u $ . Come si arriva a dire che $ (y'')/y=u'+u^2 $ ?
Caso 2 (analogo):
$ y'=p $ e quindi $ y''=pp' $ .
Chi potrebbe spiegarmelo? Grazie in anticipo.

Salve,non riesco a risolvere questo limite:
$ lim_(x -> +∞) (x^17-x^16)^(1/17)-x $
Avevo pensato di raccogliere $x^17$ dentro la radice per poi semplificarlo ma non ne sono sicuro,grazie in anticipo!
Buongiorno ragazzi,
Sto risolvendo il seguente integrale triplo $\int int int zdxdydz$ esteso al dominio ${(x,y,z) in RR^3: x^2+y^2+z^2<1 e sqrt(3)z>sqrt(x^2+y^2)}$. Io l'ho risolto passando a coordinate cilindriche con le nuove limitazioni: $0<\Theta<2pi$; $0<c<sqrt(3)/2$ e $ -sqrt(1-c^2)<z<sqrt(1-c^2)$. Alla fine ho ottenuto come risultato $3/16pi$. L'ho fatto passando anche a coordinate sferiche
con le limitazioni $0<\Theta<2pi$; $0<\varphi<pi/3$ e $0<c<1$ e ho ottenuto lo stesso risultato $3/16pi$. Purtroppo il ...

Ciao,
mi stavo chiedendo com'è che vanno risolti esercizio del tipo:
"Nota la funzione $g(x)$ trova $f$ tale che:
$int_0^x f = g(x)$"
Io ne ho risolto qualcuno un po' ad intuito e un po' a tentativi, ma non ho un vero e proprio metodo. All'inizio avevo pensato di fare così:
$int_0^x f = F(x) - F(0)$ con $ \dot F = f$ e a questo punto:
$int_0^x f = F(x) - F(0) = g(x)$ che derivata dà $f(x) - f(0) = \dot g$.
Però non so bene come gestire quell'$f(0)$
Cerco una dispensa dove trovare questa affermazione nel caso in cui sia vera
sia $y:J->RR$ una funzione derivabile $n$ volte in $J$ e $F:RR^(n+1)->RR$ una funzione lineare, allora
$X={y:J->RR|F(y,y^((1)),...,y^((n)))=0}$
È un sottospazio di dimensione $n$ di $RR^(J)$

Ho deciso di iscrivermi per un dubbio che mi è sorto seguendo uno svolgimento del mio eserciziario, praticamente ho il limite
$lim_(n->∞) sin(a^n)/a^n$ per a= 1/2,1,2
Per 1/2 è banale e l'ho risolto senza dubbi, per gli altri due: uno sbagliato alla grande e vorrei chiedere delucidazioni perché seppure abbia visto lo svolgimento sintetico non mi è chiarissimo e sbaglierei di nuovo 99/100.
Per a=1 io so che $1^∞$ è una forma indeterminata e in realtà il mio libro di teoria dice anche per ...

Sul Prodi di Analisi 1, un esercizio chiede di dimostrare, usando la definizione di integrale (secondo Riemann), che $ \int_{a}^{b}xdx = \frac{b^2-a^2}{2} $.
Io l'ho risolto nel seguente modo, assumendo in partenza che $ \int_{a}^{b}f(x)dx=\int_{0}^{b}f(x)dx-\int_{0}^{a}f(x)dx $ (non so fino a che punto possa effettivamente assumerlo).
Calcolando dunque l'integrale sull'intervallo $[0,a]$, ho diviso quest'intervallo in $ n $ parti di ampiezza $ a/n $ ciascuna.
Chiamando $ x_k $ il $ k $-esimo ...
Buongiorno a tutti , devo risolvere questo integrale definito :
$ int_(0)^(2) dx/(|e^x-e|+e^x) $
non ho problemi nello svolgimento dell'integrale , ma non ho ben capito come devo ''togliere'' il valore assoluto .
Non dovrei dividere l'integrale con x e -x? Ma -x non si mette per x

Salve ragazzi. Ci tengo a tenervi sempre sul pezzo
Il dubbio che vorrei dissipare oggi è il seguente:
Facendo gli sviluppi di Tayolor (centrati in 0) di funzioni composte mi ritrovo spesso a grattarmi la testa per quanto riguarda gli o-piccoli. Ad esempio (sviluppo fino al 4° ordine) di $ln(cos(x))$:
$ln(cos(x))$
$ln(1-x^2/2+x^4/24+o(x^5))$
$-x^2/2+x^4/24+o(x^5)-x^4/8+o(x^7)+o((-x^2/2+x^4/24+o(x^5))^2)$
(ho volutamente omesso subito i termini maggiori di $x^4$)
Ora, il termine che mi da fastidio è il ...

buongiorno non riesco a svolgere questo integrale:( $ int_(0)^(1) z^3/(z^8+1) dz $
non so come iniziare. grazie in anticipo

Salve.
Che tipo di equazione differenziale è la seguente, e che strategia posso applicare per risolverla?
xy'+y=ln(y')
Grazie in anticipo per le risposte