Forum

Domande e risposte su qualsiasi materia per scuole medie, superiori e università da parte della community di studenti.

Domande e risposte

Ordina per

In evidenza
In evidenza
Più recenti
Più popolari
Con risposta
Con miglior risposta
Senza risposta
Mendoza89
Buonasera ragazzi, Innanzitutto mi presento, mi chiamo Roberto, 28 anni, di Napoli, sono uno studente-lavoratore, e mi accingo a scrivere la tesi di laurea in giurisprudenza, che vorrei discutere in autunno. Piacere di conoscervi! Vorrei trattare nella mia tesi del digital marketing e dell'advertising online in generale ma essendo iscritto a giurisprudenza, devo per forza di cose trattare l'argomento anche dal punto di vista giuridico-normativo. Volevo chiedervi per l'appunto, se avevate ...
1
18 apr 2018, 18:03

Studente Anonimo
Sia \(s= \frac{X^3+2}{X} \in \mathbb{Q}(X) \). Consideriamo \( \mathbb{Q}(s) \) il più piccolo sotto campo di \( \mathbb{Q}(X) \) contenenete \(s\) (da non confondere con il campo delle frazioni razionali in una indeterminata \(s\)). a) Dimostra che \( \mathbb{Q}(X) \) è algebrico su \( \mathbb{Q}(s) \) b) Calcola i gradi \( [\mathbb{Q}(X) : \mathbb{Q}(s)] \) e \( [\mathbb{Q}(s) : \mathbb{Q}]\). Per a) ho fatto così abbiamo che è algebrico se per ogni elemento \( \alpha \in \mathbb{Q}(X) \), ...
1
Studente Anonimo
22 lug 2020, 20:26

gemini.931
Salve ragazzi sto affrontando un problema in fisica in cui si chiede di mettersi in un riferimento solidale con un corpo che vaggia ad una certa velocità v si effettua il cambio di variabile \(\displaystyle z'=z \) \(\displaystyle t'=t-\frac{z}{v} \) a questo punto si tiene conto del cambio di variabile nelle derivate e risulta \(\displaystyle \frac{\partial}{\partial z} = \frac{\partial}{\partial z'} \) \(\displaystyle \frac{ \partial }{ \partial t }=- \frac{1}{v } \frac{ \partial t' }{ ...

IRENEZANN
Urgente (277043) Miglior risposta
Versione greco apollo non manca il bersaglio
4
21 lug 2020, 09:37

Cla1608
Buongiorno, sto ripassando la legge di affinità per le pompe centrifughe e mi ritrovo una formula del genere per poi arrivare a rappresentare l andamento delle curva caratteristica di una pompa al variare del numero di giri (posto l'immagine e non la riscrivo tutta perchè credo sia errata): Inizia il discorso con il coefficiente di portata e quello di carico. Secondo me la formula esatta dovrebbe essere questa seguente: 1) $ H=Q^2*psi /(phi ^2 D^4*g) $ Non capisco come mai ...
1
14 lug 2020, 16:49

12aby
Calcola la lunghezza del lato di un quadrato isoperimetrico di un trapezio isocele sapendo che la somma e la differenza delle basi del trapezio sono 56 cm e 16 cm e che il lato obliquo supera la base minore di 4 cm
1
23 lug 2020, 20:04

andretop00
Salve, avrei bisogno di un chiarimento. Il campo è irrotazionale, ma dato che l’integrale lungo la circonferenza non è zero, si conclude che il campo non è conservativo in R2 meno (0,0) per quale motivo? Non dovrebbe essere localmente conservativo? Inoltre ammette potenziale, no? Grazie
9
23 lug 2020, 15:18

chiaramc1
Salve, ho il seguente problema dei versori e somma vettoriale: x è uno spostamento di $10m$ a $45$ gradi a sud-ovest. Devo trovare il vettore risultante usando anche i versori. Parto dal disegno, vedo che il vettore risultante non si trova lungo l'asse x e y, ma è a 45 gradi rispetto a x. Devo trovare le componenti: xX e xY. $xX=F*cos=7,07i$ $xY=F*seno=-7,07j$ La componente $y$ ha valore negativo. Calcolo la somma vettoriale usando i ...

leo--msn
Ciao, studierò dal prossimo semestre matematica applicata o all'università tecnica di Monaco (TUM) o al Politecnico di Zurigo (ETH). Entrambi i corsi sono molto flessibili, ossia, entro certi limiti e regolamentazioni, mi lasciano scegliere completamente il piano di studi. Il programma all'ETH è da 90 ECTS (che dovrò integrare con un esame da 10 crediti), mentre alla TUM Sono 120. Attualmente propendo per Monaco per la possibilità di studiare più contenuti, e perché l'ETH ha un'offerta ...
3
23 lug 2020, 09:54

salvatoresambito
Buongiorno, non riesco a capire un'uguaglianza di una dimostrazione che riguarda le serie di potenze. Se $ omega in D(z_0 , R) $ allora : $ |c_k(z-z_0)^k|=|c_k(z-z_0)^k ((w-z_0)^k)/(z-z_0)^k|$ Per $D(z_0 , R)$ s'intende il disco chiuso, $z_0$ sarebbe il centro della serie e $|c_k(z-z_0)|$ il termine generale della serie di potenze. p.s. non capisco perché quella quantità : $((w-z_0)^k)/(z-z_0)^k$ dovrebbe fare 1 Grazie a tutti
3
23 lug 2020, 11:09

Dragonlord
Ho il seguente problema di trigonometria: Dato un triangolo di angoli α, β e γ, determina tg(γ) sapendo che cos(α) = 12/13 e cos(β) = 4/5. Determina inoltre se il triangolo è acutangolo o ottusangolo. Soluzioni: - 56 / 33 ; Ottusangolo. La tangente l'ho trovata in maniera un pò contorta. Visto che \(\displaystyle a + β + γ = 180° \), ho scritto \(\displaystyle tg(a + β + γ) = tg(180°) \), cioè \(\displaystyle tg(a + β + γ) = 0 \). Ora dalla relazione fondamentale ho ricavato il seno di α e ...
7
22 lug 2020, 20:44

Dragonlord
Ragazzi, ho questi esercizi: 1. Un supermercato ha tre marche di succhi di frutta. Acquistandone uno per marca si spendono 6,48 €. Sapendo che la marca A costa 50 centesimi in più della marca B e che la marca C costa 40 centesimi in meno della marca B, quanto costa la marca C? 2. Un auto di piccola cilindrata consuma 1/5 di carburante in meno rispettoad un auto di grossa cilindrata. Sapendo che quest'ultima percorre 180 Km. con 8 litri di benzina, quanti Km. percorrerà l'auto di piccola ...
4
22 lug 2020, 20:37

12aby
1. Calcola il perimetro di un rombo sapendo che il lato é congruente ad 1/3 della dimensione maggiore di un rettangolo con perimetro di 216 cm e con una dimensione doppia dell'altra. 2. Calcola il perimetro di un rombo sapendo che il lato é congruente al lato minore di un parallelogrammo con perimetro di 138 cm e con una dimensione 1/3 dell'altra. Le risposte devono essere in il uno 96 e in il due 69 Grazie
4
22 lug 2020, 19:26

jas1231
Salve a tutti, premetto che non so se questa è la sezione giusta per quest'argomento, ma ci sono incastrato da ore. Sto compilando un documento in latex ed ho la necessità di inserire alcuni grafici, in particolare vorrei inserire una sfera con meridiani e paralleli. Sono riuscito a costruirla in 2d su Geogebra e la volevo esportare in PGF/.Tikz. Quando vado ad inserire ilo codice nel file .txt non da alcun errore però nel pdf non compaiono i meridiani e i paralleli. Qualcuno ha qualche idea ...
8
17 lug 2020, 14:37

dario.basile
Inizio con lo scusarmi per le foto anziché le formule scritte, ma essendo nuovo ed essendo molte, le trovo enormemente tediose da scrivere. Il mio problema nasce nel momento in cui sostituisco nella [1.20] ciò che mi dice di sostituire, e scrivendo a parte i termini con $k=0$ e $k=n+1$ dell'equazione $(n!)/((k-1)!*(n+1-k)!)$ per ottenere rispettivamente i valori $b^(n+1)$ e $a^(n+1)$ . Sostituendo $k=n+1$ mi ...

seth9797
buonasera mi imbatto in questo problema : " nel circuito in figura , $ xi = 21 V $ , $ R=33 kOmega $ e $ C=2.7muF $; $ t=0 $ corrisponde all'istante in cui l'interruttore viene chiuso. Ammettiamo che la resistenza interna della batteria sia trascurabile. A) Qual'è la carica del condensatore per $ t = 60 ms $ ? B) Qual'è l'energia immagazzinata nel condensatore per $ t= 60ms $ ? C) Qual'è l'energia ceduta dalla batteria ai portatori di carica ...

massimino's
Ciao Vorrei poter chiarire un dubbio sortomi durante lo studio e riguardante l'accelerazione centripeta. So che $a_c=omega^2R$, nel moto circolare uniforme. Tuttavia nella notazione vettoriale: $\veca=\vecalphaxx\vecr+\vecomegaxx\vecv$ il libro fa un ragionamento che non comprendo,ossia scrive: $|\vecomegaxx\vecv|=omega*omegav=omega^2v$ da cui il dubbio: ma la relazione $v=omegar$ istante per istante è valida anche in un moto circolare qualsiasi (cioè anche non uniforme)? Perché quella relazione mi è stata ricavata solo per ...

Aletzunny1
salve, sto trovando difficoltà nello studio della funzione implicita associata a $f(x,y)=xy^2-x^2y-ln(x)$ in particolare per trovare i minimi e massimi della funzione implicita $y(x)$ devo risolvere il sistema $\{(y^2-2xy-1/x =0),(xy^2-x^2y-ln(x)=0):}$ ma non riesco a risolverlo! È fattibile oppure bisogna adottare una strategia di risoluzione diversa? qualcuno saprebbe aiutarmi? E sbaglio io e c'è qualche altro modo per determinare i minimi e massimi di una funzione implicita? Grazie
19
17 lug 2020, 20:19

Aletzunny1
Buongiorno, vorrei capire come si determina l'insieme degli zeri di una funzione $f(x,y)$ e come si rappresenta tale funzione nel piano cartesiano $(x,y)$; come è poi possibile determinare i punti di massimo e minimo di questa funzione? P.S: c'è un'analogia con il teorema di Dini e lo studio della funzione implicita? Grazie
12
22 lug 2020, 14:11

mantalessio1
qualcuno a le risposte per il libro alaska adventure ?
1
23 lug 2020, 10:01