Forum

Domande e risposte su qualsiasi materia per scuole medie, superiori e università da parte della community di studenti.

Domande e risposte

Ordina per

In evidenza
In evidenza
Più recenti
Più popolari
Con risposta
Con miglior risposta
Senza risposta
Pierlu11
Propongo degli esercizi sugli interi di Gauss con i quali ho qualche problema... 1) Dimostrare che $ 2+i $ è primo. 2) Trovare $ M.C.D.(2+i,5) $ . Per l'esercizio 1) ho pensato che è indifferente dimostrare che è primo o irriducibile... se $ 2+i $ è irriducibile, $ a+ib|2+irArr $ $ a+ib $ divisore banale; $ a+ib|2+irArra^2+b^2|5 $ cioè $ a^2+b^2=1 $ oppure $ a^2+b^2=5 $ ... in questo modo però mi vengono tanti casi da considerare e non so più come ...

nicola101010101
il lato di un quadrato e il lato obliquo di un triangolo isoscele sono congruenti . il perimetro del triangolo è 46 cm e la sua base misura 20 cm . calcola l'area del quadrato .
1
16 feb 2013, 09:35

aneres93
vorrei sapere di che serie si tratta e come potrei impostarle per eventuali calcoli perchè date così non riesco a capirle 1-[math]\sum_{ n=1}^{\infty}\frac{2^n}{3^n+1}[/math] 2-[math]\sum_{ n=0}^{\infty}\frac{1}{n^2+n+1}[/math]
2
15 feb 2013, 17:37

Valekeats12
Sono un po' in crisi sulla ricerca del carattere di alcune serie e soprattutto sui criteri da usare! Ad esempio questa: \(\sum_{n=2}^\infty(\frac{2n+1} {n-1})^{1/n} −2^{1/n}\) So che se ho una somma posso spezzare le due serie in modo tale da poterle analizzare singolarmente, per \( -2^\frac{1}{n} \) forse direi che diverge perché il limite della successione all'infinito mi dá -1, per l'altra ho pensavo alla serie armonica ma quella é solo elevata alla \(n\) e non alla \( \frac{1}{n} \), ...

andrew122
Scusate ragazzi ho un dubbio sulle equazioni differenziali a variabili separabili. mi spiego meglio con un esempio di cui avevo visto la soluzione: \[ \ y'=sin(x) \sqrt(y') \ \] dopo aver svolto i passaggi si perviene alla soluzione : \[ \ y(x)= \ \int_{0}^{x} \ (-1/2 \ cos(t) + c1 )^2 dt\ +c2 \] ora la mia domanda è perche si integra da 0 a X e non faccio un integrale indefinito come ero sempre abituato,oppure entrambi i metodi sono validi??? grazie per le ...
2
15 feb 2013, 11:48

aneres93
come lo risolvo? [math]\int \frac{2\sqrt{x+3}}{x-1}[/math]
4
12 feb 2013, 15:22

mircosam
salve, sto preparando l' esame di informatica per ingegneria civile, ma svolgendo le vecchie tracce d' appello ho dei problemi con i RECORD. Ho questo esercizio: parametri : un vettore A di elementi di tipo T_STUDENTE (Matricola: numerico; Cognome: vettore di 50 caratteri; Nome: vettore di 50 caratteri; AnnoNascita: di tipo numerico; Sesso: di tipo carattere), la dimensione n del vettore A; • valore di ritorno : nessuno; • calcolo da eseguire : ricercare e visualizzare i dati dello studente di ...
8
15 feb 2013, 13:18

frunz151
Come posso risolvere \(\int\)\(\sqrt{9t^4+16t^2}dt \) Ho provato sostituendo \(\ t^2 = x \) ma non mi porta a nulla... Probabilmente la soluzione è facile ma non la vedo... Grazie per i suggerimenti PS: L'esercizio proposto è sulle curve piane... e per determinarne la lunghezza che mi sono trovato con questo integrale...
19
13 feb 2013, 15:59

Kashaman
Salve ragazzi, ho questo esercizio : Sia $f : RR^4 -> RR^4$ l'endomorfismo associato alla matrice $A=((1,0,2,0),(0,-1,-1,3),(0,0,3,-4),(0,0,2,-3))$ rispetto alla base canonica di $RR^4$. 1) f è diagonalizzabile? 2) tenendo conto di 1 , mostrare che non esiste $B$ di $RR^4$ tale che $B=T^B(f)=((1,0,0,0),(0,-1,0,0),(0,0,1,2),(0,0,1,1))$ 1) Allora, per il primo punto non penso di aver avuto problemi. Calcolando $P_f(\lambda)=(\lambda+1)^2(\lambda-1)^2$ trovo che $f$ ha esattamente due autovalori distinti $\lambda_1=1$ con ...
1
14 feb 2013, 18:50

21zuclo
Ciao a tutti, non so se ho svolto correttamente questo esercizio. Controllate per favore e ditemi e se voi lo avreste fatto in modo diverso, scrivetelo pure. Grazie in anticipo. Stabilire se esiste il seguente integrale improprio $\int_(0)^(+\infty) root(5)(x^2)\ln(1-e^(-3x))dx$ ho ragionato così per $x\to +\infty$ .. $f(x)~ root(5)(x^2)(-e^(-3x))=-(root(5)(x^2))/(e^(3x)) \leq 1/x^2$ e CONVERGE in $U(+\infty)$ poi per $x\to 0$, (ed è qui che non se sia corretto) siccome $\ln(1-e^(-3x))$, l'argomento del logaritmo per $x\to 0$ è asintotico a ...
5
14 feb 2013, 20:58

Umbreon93
Modifico questo primo post per rendere la discussione un posto dove poter lasciare tutti i dubbi che ho riguardo alla risoluzione/alle soluzioni etc... delle equazioni e disequazioni . Pensavo di uppare ogni qual volta ponessi nuove domande,ditemi voi 1)Disequazioni parametriche 1.1)risolta : $(2a-1)x>a-3$ $2ax-x>a-3$ $x(2a-1)> a-3$ $x>(a-3)/(2a-1)$ Adesso che cosa devo fare? Sul libro ci sono 3 casi ..trova questo valore : a=1/2 .Come faccio a determinare le possibili ...
79
7 feb 2013, 04:27

simone94sr
Ciao a tutti!!! Volevo chiedere consiglio per un eserciziario di topologia generale in cui gli esercizi siano di difficoltà graduale (partono da i più semplici e via via aumenta la difficoltà)! Grazie!!!

CityOfSin
Ciao! Vendo tesina sul tema Realtà e Apparenza. L'argomento puo sembrare scontato dato che è stato trattato varie volte. Io perciò ho deciso di risolvere il problema, presentandola in una maniera originale. Non con un powerpoint o un cartellone. Ma come un fumetto. Un fumetto vero e proprio sia nelle dimensioni che nelle impostazioni e nei disegni. Una tesina che ho presentato per il mio colloquio orale, che ha destato l'attenzione di tutti i professori, con tanti complimenti e un grande ...
3
27 dic 2012, 10:37

Mario112
Rega urgente x domani pleasee
3
15 feb 2013, 17:18

Hack014
salve, ho un problema con un esercizio di geometria analitica: sia alfa il piano: x+y+z=1 e sia r la retta X=(2,1,-3)t+(1,0,1) una retta parallela al piano alfa. devo trovare tutte le rette appartenenti al piano alfa e sghembe con r passanti per il punto Q di alfa (1, -2,1). è chiaro che queste rette sono tutte quelle del piano passanti per Q tranne quelle parallele ad r, ma non so come trovarle TUTTE analiticamente, immagino di doverle trovare in funzione di un paramentro (forse due), ma non ...
2
15 feb 2013, 17:24

dencer
ciao! devo diagonalizzare la matriche complessa...ma qualcosa non torna perchè forse sbaglio?..bha...vi faccio vedere i vari passaggi che faccio la matrice è -i; 1-i (prima riga), 2; 1(seconda riga) 1)faccio il polinomio caratteristico (-i-t)(1-t)-2(1-i) 2 faccio i calcoli e lo sistemo un pò t^2+t(i-1)-2+i 3)faccio il delta di questa equazione (i-1)^2-4(-2+i) 4)il delta è 8-2i 5)poi imposto il sistema per trovare il delta da mettere nell'equazione generale...a^2-b^2=8 (parte reale) ...
6
15 feb 2013, 08:49

golia997
1) in una circonferenza lunga 60cm è inscritto un triangolo isoscele ABC la cui base BC divide il diametro AD, a essa è perpendicolare, in due parti AH e HD, tali che AH:HD=4:1. calcola il perimetro del triangolo. 2)i cateti AB e AC di un triangolo rettangolo ABC sono l'uno i 3/4 dell?altro e l'altezza AH relativa all'ipotenusa BC è lunga 48 cm. per un punto P del cateto AC che,a partire dal vertice A, lo divide in parti proporzionali ai numeri 2 e 3,conduci la parallela PQ e la perpendicolare ...
1
14 feb 2013, 11:29

Annapirrosi
Esercizio breve!: Miglior risposta
indica il caso delle seguenti coppie di vocaboli e traduci Labore gravi= a lupo rapaci= in proelio navali= feros leones= vitae agresti= vita agresti= puellae diligenti= puellas diligentes= inter proelia navalia= vita agrestis= vitae agrestis= homini crudeli=
1
15 feb 2013, 14:51

Plinio94
Versione (243453) Miglior risposta
Le mura di legno Cum Xerses et mari et terra bellum inferret universae Europae, cum tantis copiis eam invasit, quantas neque antea neque postea habuit quisquam habuit. Illius de adventu cum fama in Graeciam perlata esset et maxime Athenienses bello cruciarentur propter pugnam Marathoniam, illi legatos miserunt Delphos. Ut a deo poterent quidnam facerent de rebus suis. Interrogantibus Pythia respondit ut moenibus ligneis se munirent. cum nemo illud responsum intellegent, Themistocles ...
1
15 feb 2013, 17:08

AngyPaci
ho quasi tutte le materie sotto , come faccio a recuperarle?
8
12 feb 2013, 15:09