Forum
Domande e risposte su qualsiasi materia per scuole medie, superiori e università da parte della community di studenti.
Domande e risposte
Ordina per
In evidenza
ciao a tutti....la prof di storia mi ha chiesto di fare il commento della poesia di kipling "il fardello dell'uomo bianco" ma su internet non riesco a trovare niente....e se per favore non mi date dei siti dove si devono scaricare i documenti xkè il mio pc si è rotto e non riesco a scaricare niente....grazie mille.......
Raccogli il fardello dell'Uomo Bianco -
Disperdi il fiore della tua progenie -
Obbliga i tuoi figli all'esilio
Per servire le necessità dei tuoi prigionieri;
Per ...
Il mio prof ci ha dato questa definizione di differenziale:
data $ f: Omega sube RR^n -> RR^m $ il differenziale in $ x_0 in Omega $ è dato dall'applicazione lineare $ T_(x_0):RR^n->RR^m $ tale che $ f(x_0+h)-f(x_0)-T_(x_0)(h) = o(||h||) $ con $ h in RR^n $.
Per dimostrare che il differenziale è unico ho pensato di fare così:
$ lim_(h -> 0) (f(x_0+h)-f(x_0)-T_(x_0)(h))/||h|| = $ ***
$ = lim_(t -> 0) (f(x_0+th)-f(x_0)-T_(x_0)(th))/(t||h||) = $
quindi
$ = lim_(t -> 0) (f(x_0+th)-f(x_0))/t -T_(x_0)(h) = $
$ = lim_(t -> 0) (f(x_0+th)-f(x_0))/t = T_(x_0)(h) $
quindi essendo unico il limite è unico anche il differenziale
***: è corretto fare questo passaggio?
o magari ...
Buongiorno!
Devo risolvere la seguente equazione $z^4-4i=0$ ma non so da che parte cominciare. All'inizio ho provato sostituendo $a+ib$ a $z$ ed a svolgere qualche calcolo, però non mi ha portato da nessuna parte.
$ (x^2-1)/(x^4-4x^3+7x^2-4x+1)>0 $
So che dovrei riuscire a risolverla facilmente ma non riesco a capire come risolvere il denominatore, potreste aiutarmi?
Un'urna contiene 20 palline colorate, di cui 3 rosse e le altre blu. Estraendo 6 palline in blocco, calcolare la probabilità che tra le 6 palline estratte
a) Non ci sia alcuna pallina rossa
b) Ci sia esattamente una pallina rossa
c) Ci sia almeno una pallina rossa
d) Ci siano le tre palline rosse
Ho trovato questo esercizio su un tema d'esame e non riesco a capirlo, sarei grato se qualcuno mi aiutasse nello svolgimento, grazie
"Sia Mn,n(R) lo spazio delle matrici quadrate di ordine n su R. Trova tutte le matrici simili alla matrice nulla 0 appartenente a Mn,n(R) e alla matrice identità In appartenente a Mn,n(R)."
Salve, non riesco a capire perché non mi esca questo esercizio. Ho la serie $\sum_{n=1}^oo [n^(3)logn-e^(3logn)]/[log(e^n)+n^(5)logn]$ che con le opportune semplificazioni diventa $\sum_{n=1}^oo [n^(3)logn-n^3]/[n+n^(5)logn]$ dopo di ciò applico il criterio del rapporto ma mi esce $1$ , invece dovrebbe uscire un valore $1<$ ovvero serie convergente. Mi potete aiutare ?
Data una equazione differenziale lineare... ad esempio del secondo ordine...
Le soluzioni quante sono?
Una è la soluzione particolare, che, anche presa da sola, risolve l'equazione differenziale, e lo si verifica con una banale sostituzione.
L'altra è l'integrale generale, che somma la soluzione particolare alla soluzione dell'omogenea associata.
Anch'essa risolve l'equazione differenziale, se si effettua la sostituzione.
Ho notato che invece la soluzione dell'omogenea associata, presa da ...
Salve, riporto una serie che non riesco a svolgere: $\sum_{n=1}^oo (-1)^(n)[(n-1)/n^n]$ . Ho applicato il Criterio di Leibniz, quindi il $\lim_{n \to \infty}(n-1)/n^n$ $=$ $0$ ma poi mi blocco perché non riesco a dimostrare che $a_{n+1}<a_{n}$ . Mi potete aiutare ? Devo dimostrare che la serie converga
Ciao ragazzi,
non capisco come risolvere questo esercizio d'esame degli anni passati:
Dimostrare che per ogni numero positivo $n$ e per ogni numero reale positivo $a$ si ha $(1 + a)n ≥ 1 + na$.
Soluzione: binomio di Newton.
Come si fa tramite il binomio di Newton a dimostrarlo?
Di questa tipologia c'è anche quest'altro:
Dimostrare che per ogni numero positivo $n$ si ha $2^n ≥ n$.
Soluzione: biniomio di Newton.
Esercizio 1 :
Un'urna contiene 20 palline colorate, di cui 3 rosse e le altre blu. Estraendo 6 palline in blocco, calcolare la probabilità che tra le 6 palline estratte
a) Non ci sia alcuna pallina rossa
b) Ci sia esattamente una pallina rossa
c) Ci sia almeno una pallina rossa
d) Ci siano le tre palline rosse
Esercizio 2:
Siano A e B due eventi indipendenti con P ( A U B ) = 0,72 e P ( A ) = 0,3. Calcolare P ( B )
Esercizio 3 ( Teorema del Limite centrale ) :
Se il 2% dei biscotti ...
Ciao,
Supponiamo di avere un'equazione differenziale di questo tipo:
$ay''+by'+cy=x+senx$.
Con $a,b,c in RR$
Ora, in questo caso so che la soluzione è $y=y_0+y_(p1)+y_(p2)$.
Dove $y_0$ è l'integrale generale dell'equazione omogenea associata, $y_(p1)$ è l'integrale particolare dell'equazione considerando solo $x$ come termine noto, e $y_(p2)$ l'integrale dell'equazione considerando solo $senx$ come termine noto.
Il dubbio potrebbe sembrare ...
Salve a tutti sto preparando l'esame di analisi 2 e sto affrontando il teorema dei moltiplicatori di Lagrange pero non mi e chiaro un passaggio che ha fatto la prof nella dimostrazione del teorema che vi riporto:
$f: A sube RR^k rarr RR$
$\barg: A rarrRR^m$
$V={\bar x in A: g(\bar x)= \bar0}$
$L: (\bar x,\barlambda)in AXRR^mrarr f(\barx)-\barlambdag(\barx) in RR$
"Siano $f,g in C_(A)^1$ se $\bar x^{\prime}$ è un punto di max condizionato per f su V( vincolo) e se il rango della matrice Jacobiana di $g(\bar x)$ nei punti di V è m allora $EE\bar lambda^{\prime}inRR^m$ in modo che ...
salve ho il seguente limite notevole che non riesco a risolvere:
$ limx->0^+ (log(1-7x))/(√1-cosx) $
il risultato dev'essere -7√2
il mio svolgimento:
$ limx->0^+ ((log(1-7x))/(√1-cosx) ) * (-7x)/(-7x) = $
$ limx->0^+ ((-7x)/(√1-cosx)) * x^2/x^2 = $
$ limx->0^+ (-7)/(x√2) = $
sostituisco ed esce -7/0
Potreste aiutarmi???
Sia $f(z)=z^2/(z^2+1)$
a) Determinare la seie di Laurent di $f$ intorno al punto $z=i$
b)Determinare il tipo di singolarità di $f$ all'$oo$
Vorrei una conferma su questo esercizio se è possibile.
a)$1/(z+i)=1/(2i+z-i)=1/(2i(1-(-(z-i)/(2i))))=1/(2i)\sum_{n=0}^oo (-1)^n((z-i)/(2i))^n$
$f(z)=1-1/(z^2+1)=1-1/((z-i)(z+i))=$
$=1+\sum_{n=0}^oo (-1)^(n+1)(z-i)^(n-1)/(2i)^(n+1)=1-(z-i)^(-1)/(2i)+1/(2i)+\sum_{n=0}^oo (-1)^(n+1)(z-i)^(n+1)/(2i)^(n+3)=$
$=-(z-i)^(-1)/(2i)+1-i/2+\sum_{n=0}^oo (-1)^(n+1)(z-i)^(n+1)/(2i)^(n+3)$
Mi puzza un po' il fatto del termine $a_0$...non dovrebbe venire $i/2$? Però almeno il fatto che il punto $z=i$ è un polo di ordine 1 mi ...
Buonasera, mi ricapita di dover fare meccanica razionale dopo anni e ho un dubbio riguardo le reazioni vincolari; vi spiego il problema: supponiamo di avere un semplice sistema piano con un'asta di lunghezza L vincolata nel suo estremo A nell'origine degli assi (dunque può solo ruotare).
La cosa certa è che devo usare la II equazione cardinale della dinamica \(\displaystyle \mathbf{\dot{K}} = \mathbf{M^{(e,a)}} + \mathbf{\Psi^{(e,v)}} \) con la quale ottengo l'equazione pura del moto ...
Per \(a_i > 0 \) e \(n \in \mathbb{N} \) mostrare che \[ \sum_{i=1}^n a_i \le 1 \quad \Longrightarrow \quad \sum_{i=1}^n \frac{1}{a_i} \ge n^2.\]
Ci sono almeno tre modi diversi di dimostrarla. Io ne ho trovato uno, parlando con amici ne son saltati fuori altri due.
Ciao, volevo sapere se un minore di ordine a di una matrice è il determinante di una sottomatrice quadrata di ordine a della matrice oppure è la sottomatrice stessa e non il suo determinante.Io sapevo la "prima definizione".Grazie tante.