Forum

Domande e risposte su qualsiasi materia per scuole medie, superiori e università da parte della community di studenti.

Domande e risposte

Ordina per

In evidenza
In evidenza
Più recenti
Più popolari
Con risposta
Con miglior risposta
Senza risposta
robertofiglia
Potreste dirmi se il procedimento è corretto e\o se c'è un metodo più rapido? Grazie \( \begin{cases} y'(x)+y(x)sin(x)-sin(x)=0 \\ y(0)=\pi \end{cases} \) Porto il sin(x) dall'altra parte \(y'(x)+y(x)sin(x)=sin(x)\) cosi da avere l'equazione di primo grado non omogenea del tipo \( y'(x)+p(x)y=q(x) \) con y uguale a \( y=e^-{\int p(x) dx } (\int{q(x)}e^{\int p(x) dx } dx + c \) Sostituendo con ciò che ho, ottengo \( ( y=e^-{\int xsin(x) dx } (\int{sin(x)}e^{\int xsin(x) dx } dx + c \) ...

robertofiglia
Prendendo come esempio questo esercizio \( \begin{cases} y''−4y'+3y=e^{3x}+x\\y(0)=0 \\ y'(0)=1 \end{cases} \) Facendo il determinante ed essendo lambda1 e lambda 2 diversi abbiamo questo risultato: \(y(x)=c1e^x+c2e^{3x}+φ(x) \) per favore Mi servirebbe un link all'argomento o un indirizzamento per sapere i vari casi di come determinare la soluzione particolare ogni volta

lollo_ercoli
Ragazzi, avevo intenzione di intraprendere la magistrale di Scienze criminologiche a Forlì (sono laureato in scienze politiche), i dati Almalaurea sull'occupazione sembrano buoni ma ho sentito anche pessimi pareri. Chi può darmi consigli o opinioni a riguardo? grazie.
0
12 lug 2019, 01:29

Ragazzo1231
Ciao, non riesco a svolgere per intero questo esercizio: $ int(4x-5)/(x^2-2x+10) dx $ io ho iniziato così: $ int (4x-4-1)/(x^2-2x+10) dx $ $ int (4x-4)/(x^2-2x+10) dx- int 1/(x^2-2x+10) dx $ $ int (2(2x-2))/(x^2-2x+10) dx- int 1/(x^2-2x+10) dx $ $2 int ((2x-2))/(x^2-2x+10) dx- int 1/(x^2-2x+10) dx $ questa parte qui: $2 int ((2x-2))/(x^2-2x+10) dx$ è uguale al $ln(x^2-2x+10)$ ma non riesco a capire come continuare con $int 1/(x^2-2x+10) dx$, un aiuto?

curie88
Buona sera a tutti, sono in cerca di una formula per la forza efficace(intendo dire con tale termine che la forza applicata alla massa $m$ da lanciare in orizzontale debba essere quella che efficacemente produca la gittata($d$) massima di m), che denomino $F_e$, che bisogna applicare ad un corpo dotato di massa $m$, affinché esso percorra la maggior distanza $d$(gittata) possibile, in presenza di attrito $A$(anche ...

leo2002xia
I sistemi a cuscino d'aria permettono di annullare quasi completamente gli attriti e sono usati non solo per i carrellini degli esperimenti di fisica ma anche in reali sistemi di trasporto (hovercraft) e in ambito industriale per la movimentazione di componenti. Sistemi di trasporto di questo tipo possono portare carichi fino a 280 t. Un sistema genere deve essere utilizzato con le dovute cautele: supponi che si sposti a una velocità di 1 m/s. Calcola in quanto spazio fermano questo carico 10 ...
1
11 lug 2019, 10:13

Andreamatematica
Salve, presento il seguente quesito: "Dopo aver definito la Duration di Macaulay $D$ e la Duration Modificata $D_m$ per un coupon bond con scadenza $n$, valore facciale $F$, tasso cedolare $c$ e prezzo $P$, dimostrare relazione $(text(d)P)/(text(d) text(landa)) = - D_m * P$, dove $text(landa)$ è il rendimento a maturità. Prima di tutto ho scritto la duration di macaulay $D= (F*(n/m)*dn+C/m sum_k k*dk)/P$ Con $dk=(1+ text(landa)/m)^(-k)$ Dovrei derivare ora il ...

universo1
Un saluto a tutti gli utenti. Sono arrivato ad un punto della vita in cui ogni passo e ogni decisione nel particolare pesa come un passo di un gigante. Ho 25 anni e sono iscritto al primo anno di Matematica alla Statale e sto incontrando un po di difficoltà. Il mio percorso scolastico è stato pessimo, infatti al terzo anno sono stato bocciato due volte consecutive; ciò mi ha spinto a lasciare la scuola, ma non riuscendo a trovare lavoro mi sono iscritto al peggiore serale della città dove non ...
20
27 mag 2019, 20:02

astrolabio95
Salve a tutti, Sto risolvendo questa equazione di convezione lineare non stazionaria $ (d\varphi)/dt = a(d\varphi)/dx $ nell'intervallo $ [0,L] $ con condizioni al contorno periodiche e condizione iniziale $ \varphi(x,0) = (x-L)^2cos((2\pix)/L) $. La traccia richiede di discretizzare la derivata spaziale in questo modo $ 1/6\varphi_(i-1)^{\prime} + 2/3\varphi_i^{\prime} + 1/6\varphi_(i+1)^{\prime} = (\varphi_(i+1)-\varphi_(i-1))/(2h) $ e di risolvere il sistema di ODE $ (d\varphi(t))/dt = aD\varphi $ con un metodo Runge-Kutta su quattro passi il cui array è $ c = (0,1/2,1/2,1) $ $ A_(ij) = | ( 0 , 0, 0, 0),( 1/2, 0, 0, 0),( 0, 1/2, 0, 0),( 0, 0, 1, 0) | $ ...

emantu
Ciao a tutti, sono emantu! Sono uno studente di ingegneria meccanica al terzo anno, che dopo l'ennesima volta che ha visitato il forum per risolvere qualche dubbio ha finalmente deciso di iscriversi. Spero che possiate aiutarmi nel risolvere le mie incertezze, ma soprattutto che anch'io possa aiutare qualcuno di voi! Vi saluto, a presto!
2
11 lug 2019, 09:58

valeri901
Buongiorno, vorrei avere un aiuto per risolvere questa serie di potenza: Sum(n=1 a infinito) (-1^n)*(nx^(2n-1)). So calcolarmi il raggio di convergenza: r=( lim n—>infinito(n+1/n))^-1=1 la serie converge per (-1,1) non converge agli estremi. Ora dovrei calcolare la somma della serie data, qualcuno sa aiutarmi? Grazie!!

simi2799
Salve ragazzi, credo di essermi inceppato sul concetto di densità di carica. Ad esempio quella superficiale è definita come $(dQ)/(dS)$. Quindi il mio ragionamento è che se la carica non dipende dall'area infinitesima in cui si trova, significa che il valore di carica è identico ovunque. Ma questo vuol dire che allora la derivata è 0 e che quindi la densità è necessariamente 0, e questo è un controsenso. Cos'è che sbaglio?

cri981
salve a tutti! dato questo integrale doppio: $ int int_(A) (y-2x) dx dy $ con A delimitato da X=0 Y=0 y=3x+6 disegnando le tre rette ottengo che: mi risulta che sia normale rispetto ad x: $-2<=x<=0$ $0<=y<=3x+6$ ottengo quindi l'integrale $ int_(-2)^(0)dx(int_(0)^(3x+6) y-2x dy) = $ $ int_(-2)^(0)dx(int_(0)^(3x+6) y-2x dy) = -2int_(-2)^(0)x dx(int_(0)^(3x+6) y dy) = $ l'impostazione è corretta. continuando nello svolgimento dei calcoli ottengo come risultato 6, mentre la soluzione deve essere 20. Grazie!
3
9 lug 2019, 18:47

Cantor99
Salve, vorrei provare che un cono quadratico è una quadrica Nello spazio proiettivo, sia $\pi$ un piano, $\Gamma$ una sua conica e $V$ un punto non appartenente a $\pi$. Si dice cono quadratico di vertice $V$ e generatrice $\Gamma$ l'insieme \[ \mbox{Sc}(V,\Gamma)=\bigcup_{P\in \Gamma}PV \] dove con $PV$ s'intende la retta che passa per $P$ e $V$. Ora i miei ...
6
28 giu 2019, 23:58

qwertyce1
facevo dei ragionamenti che credevo corretti, finché nel ragionamento la comparsa di tale sistema di equazioni ha messo in crisi le mie certezze. come trattare un sistema di grado frazionario? calcolare le soluzioni (se esistono) mi importa ma non moltissimo, sopratutto mi interesserebbe poter dire se le soluzioni esistono, e se sì quante sono, ragionando per come sono abituato direi che il sistema è di grado 9/4, ma il numero di soluzioni ovviamente deve essere un numero ...

RP-1
Buongiorno, ho difficoltà a visualizzare la situazione geometrica che si presenta nel seguente esercizio: Un protone di energia cinetica $E_k = 50\ "MeV"$ si muove lungo l’asse $x$ e entra in un campo magnetico $B = 0.5\ "T"$, ortogonale al piano $xy$, che si estende da $x = 0$ a $x = L = 1\ "m"$. Calcolare all’uscita del magnete nel punto $P$: a) l’angolo che la velocità del protone forma con l’asse $x$; b) la ...

CelioClelia
Buongiorno. Mi diverto nel risolvere questo tipo di esercizi pero' questa volta ne ho trovato uno un po' complicato. L'esercizio e' il seguente : [fcd="Schema Blocchi"][FIDOCAD] [FIDOCAD] RV 20 35 40 25 0 RV 75 35 95 25 0 RV 20 60 40 70 0 RV 70 60 90 70 0 EV 55 25 65 35 0 EV 55 80 65 90 0 EV 125 30 125 30 0 EV 125 30 125 30 0 EV 125 30 125 30 0 EV 105 25 115 35 0 EV 120 65 120 65 0 EV 120 65 120 65 0 EV 115 60 105 70 0 TY 30 25 4 3 0 0 0 * C TY 85 25 4 3 0 0 0 * A TY 80 60 4 3 0 0 0 * B TY ...
2
4 lug 2019, 14:06

MicheLinux
Salve a tutti e anticipo un grazie a chi vorrà rispondere. Premetto che è l'impostazione di un sistema di Macchine a Fluido per un Impianto Vapore a Rigenerazione con Z spillamenti. Allora perché qui in Analisi? L'ho ritenuta la sezione più adatta poiché trattasi di un problema di massimo condizionato. Qualora i moderatori/amministratori la ritenessero la sezione sbagliata possono (ovviamente ) spostare tale topic nella sezione più pertinente. Premesso ciò, vorrei focalizzare l'attenzione ...
2
11 lug 2019, 12:15

speedybeppe
Buongiorno a tutti, Mi sto preparando per dare l' esame di Fisica, ma ho dei dubbi sul calcolo vettoriale. Precisamente, se un esercizio mi chiede di calcolare oltre al classico modulo, direzione, verso, angoli vari con altri vettori/asse X o Y, perpendicolarità ecc ecc ecc, cosa dovrei fare se mi chiedono di calcolare la potenza di quel vettore? Ad esempio, se io ho un vettore $vec v$ che parte dal punto $A(0,0)$ al punto $B(2,-2)$ e l' esercizio mi chiede di ...

jinsang
Ho un dubbio di teoria. Ho trovato su wikipedia che sono fatti equivalenti: 1. $f:CC->CC$ olomorfa su tutto $CC$ 2. $f$ ammette in un certo $a \in CC$ uno sviluppo in serie di potenze con raggio di convergenza infinito. 3. $f$ ammette in ogni $a \in CC$ uno sviluppo in serie di potenze con raggio di convergenza infinito. Sul mio testo di analisi complessa (Cartan - Elementary Theory of Analytic Functions of One Or Several Complex ...
1
10 lug 2019, 20:49