Forum

Domande e risposte su qualsiasi materia per scuole medie, superiori e università da parte della community di studenti.

Domande e risposte

Ordina per

In evidenza
In evidenza
Più recenti
Più popolari
Con risposta
Con miglior risposta
Senza risposta
Eriiikaaa
Problemi ed equazioni Miglior risposta
Ciao a tutti. Scusate potreste aiutarmi a risolvere questo problema, non riesco a capirlo:"Un terreno di forma rettangolare ha un perimetro di 6k (con k>0). La misura della metà del lato maggiore moltiplicata per a (con a>0) è il doppio della misura del lato minore meno a. Determinare le misure dei lati del rettangolo! Grazie mille in anticipo!
1
10 ott 2019, 22:01

lucianironi
ho quzlche domanda relativa agli esamo e crediti, sono al secondo anno ma non sono riuscita a completare gli esami del primo, non aggiudicandomi cosi tutti i crediti necessari, mi è stato detto che non sono fuori corso essendo il dams una triennale, ma vorrei capire se posso stare ttanquilla (se mifanno fare gli esami del 2o anno) e fare gli esami che mi mancano nella prossima sessione, grazie
1
23 set 2019, 13:54

docmpg
Mi aiutate a risolvere quanto allegato? NOn ho ben capito come fare l'esercizio. Grazie.
10
11 ott 2019, 00:13

AlexanderSC
Salve, mentre stavo studiando il principio di inclusione ed esclusione, mi sono bloccato sulla dimostrazione: Nella 6° riga (la prima sarebbe quella con cui comincia "Proposizione 2 (Pri. . . "), non capisco perché per dimostrare la prima e la seconda formula, abbiano fatto vedere che, con determinate formule applicate ad A e B otteniamo l'insieme vuoto. Non ne vedo il collegamento, sembrano completamente diverse da quello che si vuole dimostrare o al passaggio ...

merilin76
POTENZE SULLA RETTA Miglior risposta
CIAO HO PROVATO A FARE L'ESERCIZIO IN ALLEGATO, MA NON AVENDO UN'UNITA' DI MISURA I RISULTATI MI VENGONO TUTTI SBAGLIATI. POTETE AIUTARMI GRAZIE
1
11 ott 2019, 11:31

Ficomore
Geometria (264415) Miglior risposta
Un rettangolo ha il perimetro di 198 cm e l'altezza e i 4/7 della base. Calcola il perimetro di un rettangolo che ha la base lunga 28 cm ed è equivalente ai 2/3 di quello dato.
1
9 ott 2019, 14:46

Studente Anonimo
Sia \( H \in (0,\infty ) \) e siano \( \gamma_1,\gamma_2 : [0,1] \to \mathbb{C} \) due cammini parametrizzati da \[ \gamma_1(t) = H(1+i)t \] \[\gamma_2(t) = \left\{\begin{matrix} 2Ht & \text{se} & t\in [0,1/2]\\ 2Hti(t-1/2)+H& \text{se} & t\in [1/2,1] \end{matrix}\right. \] (1) Discutere se i valori degli integrali \[ \int_{\gamma_j} e^{iz^2}dz \] per \( j=1,2 \) sono uguali. (2) Comparando i due integrali precedenti e utilizzando il fatto che \( \int_{0}^{\infty} e^{-x^2}dx = ...
1
Studente Anonimo
9 ott 2019, 01:12

docmpg
MI aiutate negli esercizi n. 165, 168, 171, 172 per favore? Grazie.
1
10 ott 2019, 22:38

Studente Anonimo
Trovare la funzione analitica \( f(z) = u(x,y) + i v(x,y) \) a partire da \[ u(x,y)= e^x(x \cos y - y \sin y) + 2 \sin x \sinh y + x^3 -3xy^3 + y \] Allora siccome dev'essere analitca, ergo olomorfa, deve soddisfare le equazioni di Cauchy-Riemann pertanto \[ \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} ; \ \ \ \frac{\partial u}{\partial y} =- \frac{\partial v}{\partial x} \] Dunque abbiamo che \[\frac{\partial u}{\partial x}=e^x(x \cos y - y \sin y + \cos y) + 2 \cos x \sinh ...
2
Studente Anonimo
30 set 2019, 22:39

ramboluis
Ciao a tutti, é la prima volta che scrivo qui sul forum. Mi sono imbattuto in un esercizio che non so come risolvere, non ho mai visto un problema del genere: $ [f(x)]^2=int_0^x f(t)(sen(t))/(2+cos(t))dt $ So studiare una funzione integrale ma non ho mai determinato f(x) , l'esercizio chiede proprio questo. Inoltre non so come gestire il fatto che f(t) non sia nota. Sarei davvero grato se qualcuno riuscisse anche solo a darmi una parola chiave con cui fare ricerche su internet. grazie.
4
10 ott 2019, 09:57

vitunurpo
Ciao a tutti! Avrei una domanda circa la soluzione di un sistema per trovare gli autovettori di un certo problema che mi viene dato. Ecco cosa mi si presenta. $ ( ( E_0-B , Delta ),( Delta , -E_0-B ) ) ( ( x ),( y ) ) =( ( 0 ),( 0 ) ) $ Quindi il sistema, considerando che $ sintheta=Delta/B $ e $ B=sqrt(E_0^2+Delta^2) $ si ottiene $ { ( (E_0/B -1)x+sintheta y=0 ),( sinthetax-(E_0/B+1)y=0 ):} $ Bene, da qua in poi ogni sorta di modo in cui lo risolvo non mi porta al risultato che dovrebbe essere x= $ cos(theta/2) $ e y= $ sin(theta/2) $ Un suggerimento? Grazie mille
2
10 ott 2019, 19:14

fmeglioli92
Ciao a tutti, vorrei chiedervi un suggerimento su come semplificare il seguente problema. Diciamo che abbia quattro eventi: A, B, C e D. Come posso riscrivere la seguente probabilitá condizionata? $P( A=a_1 | B=b_1, C=c_1, D=d_1)$ ? In particulare, vi é un modo per scomporre questa probabilitá, in modo che in ogni termine l' evento sia condizionato a massimo un altro evento? Grazie mille
1
10 ott 2019, 22:31

alessiadaversa3465
Mi serve la traduzione di queste frasi: 11. Graecae et Italicae urbes plures et clariores quam Gallicae et Hispanae fuerunt. 12. Mercurii simulacra apud Gallos plurima erant 16. Minima animalia saepe maxi-ma damna arboribus apportant. 17. Nonnumquam optimis patribus (dat. di poss.) pessimi liberi fuerunt.
1
10 ott 2019, 14:46

alifasi
Ciao a tutti! Seguo analisi 1 e inizio ad avere alcuni dubbi.Certi riesco a risolverli altri proprio no, tipo quello per cui sono qui a chiedere una mano. In realtà non so se sia vero quel che voglio dimostrare ma in alcuni esercizi funziona e quindi vorrei capire se è una proprietào meno, ma non riesco a districarmi. Il fatto che vorrei mostrare (se ha validità generale) è il seguente: $lim(x->x_0) f(x)/g(x)=l => lim(x->x_0) g(x)/f(x)=1/l$ Vi prego, se avrete voglia di rispondere, di non dare una soluzione e basta,vorrei ...
4
8 ott 2019, 21:12

CosenTheta
Si risolva l'equazione complessa: \(\displaystyle z^6 + (jz^3)^* = 0 \). Pongo \(\displaystyle z = Re^{j \theta} \), con \(\displaystyle R>0 \) necessariamente, trattandosi di una distanza. Sostituendo nell'equazione: \(\displaystyle R^6e^{j6\theta} + (e^{j \frac{\pi}{2}} * R^3 *e^{j 3\theta})^* = 0 \) ossia, in definitiva: \(\displaystyle R^6e^{j6\theta} = -R^3e^{-j(3\theta + \frac{\pi}{2})} \). Due numeri complessi coincidono quando coincidono modulo e fase, dunque: \(\displaystyle 6 ...

Filippo121
Non si può risolvere il seguente cubo con la procedura del cubo di binomio ? $ (1+ x^-2 )^ 3 $ Grazie
12
8 ott 2019, 00:24

Alfa4
Frasi d’autore greco Miglior risposta
Frasi greco
1
9 ott 2019, 17:59

dome88
Salve a tutti stavo facendo alcune osservazioni e considerazioni sulle funzioni in due variabili e nel contempo stavo cercando di capire le funzioni a valori vettoriali, spero che c'entrino qualcosa Allora la mia domanda era, se ho una funzione in due variabili $ z=f(x,y)$ definita in $ A sube R^2$ Questa non è anche una funzione vettoriale? Cioè associa ad ogni punto (x,y)(un vettore del piano) un punto (x,y,z) dello spazio(vettore nello spazio) $R^3$ ? E' corretta ...
7
5 ott 2019, 22:48

CosenTheta
Si consideri il trifase in figura: Sto tentando di risolvere il punto a) ma senza successo. Ecco qual è stato il mio ragionamento: supponendo di ragionare in soli moduli, secondo la configurazione della rete la tensione (stellata) incognita d'ingresso \(\displaystyle E \) dovrebbe agire solo sul primo carico di impedenze \(\displaystyle Z = R_L + jX_L \), mentre sui carichi di sole resistenze e di soli condensatori dovrebbe agire una tensione stellata diversa da ...
6
29 set 2019, 22:44

leomagicabula
buongiorno a tutti, ho un paio di dubbi su questo esercizio, potete aiutarmi? Sia \(f(x): \mathbb{R}\rightarrow\mathbb{R} \) e \(f(x)=e^{-|x|}\) a) Calcolare la trasformata di Fourier \(f(x)\) b) Dal risultato precedente calcolare la trasformata di Fourier di: \(g(x)=f(x)+xf(X)\) \(h(x)= f(x)\cos{(x)}\) Risoluzione: a) \( \widetilde{f}(\omega)=\frac{1}{\sqrt{2\pi}}\int f(x) e^{-i\omega x}dx=\frac{1}{\sqrt{2\pi}}\int e^{-|x|} e^{-i\omega x}dx=\) dato che è una funzione ...
4
10 ott 2019, 11:49