Matematicamente
Discussioni su temi che riguardano Matematicamente
Domande e risposte
Ordina per
In evidenza
Buongiorno a tutti.
Sto svolgendo il problema appartenente a una simulazione di prova d'esame (trattata da Matematica C.V.D. Blu, pag.650) che riporto direttamente:
Sono riuscito a risolvere il punto a.; per quanto riguarda il punto b. devo quindi calcolare il volume di questo trapezoide:
Ora, la formula per il calcolo del volume è \(\displaystyle V=\pi \int_{f(a)}^{f(b)}[f(y)]^{2}dy \), per cui:
- essendo \(\displaystyle a=\frac{1}{2} \), segue che ...
Sia \( M \) una varietà e sia \( X \) un campo vettoriale su \( M \). Dato \( m\in M \) un intorno di flusso in \( m \) è una tripla \( (U,\epsilon,\Phi) \) dove:
1. \( m\in U\subset M \) è un aperto e \( \epsilon > 0 \) o \( \epsilon = +\infty \);
2. \( \Phi\colon \left]-\epsilon,\epsilon\right[\times U\to M \) è una mappa \( \mathscr C^\infty \);
3. per ogni \( m^\prime\in U \), la mappa \( t\mapsto \Phi_t(m) = \Phi(t,m) \) è una curva integrale di \( X \) in \( m \);
4. per ogni \( t\in ...
Un segnale digitale è tale per cui i valori assunti sono o 0 oppure 1.
Tuttavia, il mio occhio è caduto su alcuni diagrammi temporali che riporto di seguito.
Ho cerchiato con differenti colori delle rappresentazioni che non mi sono mai state illustrate.
Cosa stanno a significare?
Come posso cercare sul web per saperne di più?
Grazie.
Calcolare
$$\sum_{n=0}^{+\infty} \int_{0}^{1} \binom{x}{n}dx$$
Sia $sigma(n)$ la somma di tutti i divisori di $n$; quindi i numeri perfetti sono quelli per cui $sigma(n)=2n$.
Generalizzando avremo i numeri multi-perfetti ovvero i numeri per cui sia $sigma(n)=kn$ con $k$ intero.
Denotiamo con [size=150]$p_k$[/size] i numeri $k$-perfetti.
Per esempio $120$ è [size=150]$p_3$[/size] dato che $sigma(120)=360$.
a) Se $n$ è un numero ...
Sia $\zeta_p$ una radice primitiva $p$-esima dell'unità.
Diremo che $\alpha \in \mathbb{Z}[\zeta_p]$ è $q$-primario, con $q$ primo dispari, se esiste $\beta \in \mathbb{Z}[\zeta_p]$ tale che $\alpha \equiv \beta^q \mod p^2$.
Ora siano $C$ e $C_q$ rispettivamente il gruppo delle unità ciclotomiche e il gruppo delle unità ciclotomiche $q$-primarie di $\mathbb{Q}(\zeta_p)$.
Mostrare che se $p>q$ allora $C \ne C_q$.
Questo ...
Problema geometria. Le proiezioni dei cateti sull’ipotenusa di un triangolo rettangolo misurano 19,2 cm e 10,8 cm. Calcola l’area e il volume del solido ottenuto facendo ruotare di 360° il triangolo attorno all’ipotenusa. I risultati devono essere 604,8 Pi greco centimetri quadrati e 2073,6 Pi greco centimetri cubi.
Ciao, ho bisogno di qualcuno che possa aiutarmi su una domanda ignobile (nel senso di piuttosto sciocca).
Purtroppo sono un fisico e il nostro piano di studi non prevede molto di algebra (eufemismo per dire nulla) e trovandomi ad affrontare il corso di meccanica analitica il professore ne da un approccio molto matematico (gemoetria + algebra) e ci ha fatto un enorme preambolo su vari strumenti che utilizzeremo a cui non sono avvezzo tra cui anche algebra di lie e prima ancora parentesi di lie ...
Ciao,
volevo chiarire una cosa detta dal prof a lezione rispondendo a una domanda di un compagno di corso, ma il concetto non faceva propriamente parte del discorso però non ci ho capito un tubo e volevo decifrare questa cosa.
Si parlava di un gruppo G il quale se ha un sottoinsieme chiuso per moltiplicazione e inverso e contiene in neutro allora è sottogruppo.
Poi si è divagato (su una domanda specifica) e ha parlato di connessione e in particolare connessione per archi, concetti che ho ...
Un saluto a tutti, ho quasi 50anni e vorrei riprendere a studiare matematica e incontro già un ostacolo. Ho iniziato a studiare dal 1' libro di scuola secondaria di secondo grado ma quello che leggo mi sembra tutto importante e io vorrei farmi degli appunti riassuntivi su cui studiare. Domandona: come si studia matematica? Quali sono le parti importanti?
Abbiate pazienza...
Grazie!!
Ciao a tutti
Sono un ingegnere da sempre appassionato di matematica e ragionamento astratto, mi è capitato diverse volte di trovare risposta a qualche mio quesito su questo forum e oggi mi sono deciso finalmente a diventarne membro.
Provo subito a esporvi una domanda di carattere abbastanza generale sulla fisica che mi sono sempre fatto:
Quando anni fa ho sostenuto l'esame di Analisi e Geometria 1 ho apprezzato molto l'approccio rigoroso e deduttivo con cui era stato presentato il corso (il ...
ciao a tutti! sto cercando di fissarmi in testa la dimostrazione delteorema di bernoulli... ho un problema con la regola di derivazione euleriana della funzione v=v( s(t); t). devo calcolare dv/dt:
dv/dt= (∂v/∂t) + (∂v/∂s)*(ds/dt)
ora ds/dt=v, quindi:
dv/dt= (∂v/∂t) + v(∂v/∂s)
io non capisco come " v(∂v/∂s) " opssa diventare " (∂/∂s)((v^2)/2)
se qualcuno mi sa rispondere x cortesia lo facia l + preesto! grazieeeeeee!!!
e-mail: luca.s86@alice.it
msn: luca.s86@hotmail.it
Immagino che questa idea che mi è appena venuta in mente possa essere già stata formalizzata, ma non sapendo dove cercare eventuali fonti, provo a descriverla a grandi linee:
Siamo abituati a rappresentare graficamente un insieme delimitando una porzione di spazio tramite una curva chiusa, attribuendo preventivamente una determinata caratteristica peculiare e comune agli elementi che reputiamo far parte di quella casistica.
Direi dunque che un requisito preliminare (CN) per procedere ...
Ciao a tutti, scusate se rompo con una domanda piuttosto scema però mi incuriosirebbe chiedere qui che vedo essere un forum ricco di persone molto preparate.
Sono studente del cdl in matematica e noto con dispiacere alcune pecche nella mia mente, ossia che per quanto mi piaccia studiare i più disparati argomenti proposti nei corsi purtroppo perdo molte informazioni per strada, e anche molto di base! Cosa che in gente capace per davvero, come qui, vedo che le risposte sono pressoché ...
Salve
Siano $ A,B \in M_{n,n}(K)$ matrici, e due vettori $ u, v in V_n$, con $V_n$ spazio vettoriale sul campo $K$.
Se $u^tAv=u^tBv$ allora $A=B$.
Dalle proprietà del prodotto righe per colonne $u^tAv=u^tBv => u^tAv-u^tBv = 0_K=>(u^tA-u^tB)v=0_K$
allora $u^tA-u^tB=u^t(A-B) =>(u^t(A-B))v=0_K$
Dunque, quest'ultima è vera per ogni coppia di vettori $u,v in V_n$, come posso concludere che da questo comporta che $A-B=O => A=B$
Saluti.
Salve a tutti. Invio questo problema tratto dai Giochi di Archimede 2023
Tommaso e Claudia si sfidano lanciando varie volte una moneta: ogni volta che esce testa fa un punto Tommaso, quando esce croce fa un punto Claudia. Appena uno dei due arriva a 4, la partita finisce. Qual è la probabilità che la partita termini sul punteggio di 4 a 2(per uno qualsiasi dei due)?
Non mi trovo con la soluzione ufficiale, in quanto io calcolo i vari scenari: 4 a 0, 4 a 1, 4 a 2 e 4 a 3
4 a 0 ovviamente è 1 ...
Do per scontata la conoscenza delle trasformazioni (boost) di Lorentz di spazio e tempo tra due riferimenti inerziali in moto relativo, con velocità di modulo $v$, nella direzione comune dei due assi $x$ e $x’$ , di cui il primo è considerato fisso e il secondo (con apice) è considerato mobile; ponendo $c=1$ , e quindi misurando il tempo in metri (un metro di tempo è semplicemente, in unità convenzionali, il tempo impiegato dalla luce a ...
Salve, non riesco a sbrogliare questo problema
Ho $\{v_1,\ldots, v_{n-1}\}$ vettori linearmente indipendenti in $\mathbb{R}^n$. Quindi ho un piano $\Sigma$ generato da questi vettori. Voglio trovare un vettore $v_n$ che sia ortogonale a $\Sigma$. Svolgendo un esercizio ho motivo di credere che un modo per ottenere questo vettore sia il seguente:
Definiamo la matrice $A$ mettendo fianco a fianco gli $n-1$ vettori. Quindi $A$ ha ...
Buon pomeriggio! Della serie ... a volte ritornano ... son qui a sottoporvi un mio quesito, che
è altamente probabile essere scemo all'n-esima potenza, ma non riesco a saltarne fuori!
Per entrare nel merito del calcolo, comincio con una regione circolare \(x^2+y^2\le r^2\):
[*:3m3igxt2] lunghezza corda: \(l(y):=2\left(r^2-y^2\right)^{\frac{1}{2}}\);
[/*:m:3m3igxt2]
[*:3m3igxt2] definizione funzione: \(f(y):=\int_y^r ...