Matematicamente

Discussioni su temi che riguardano Matematicamente

Domande e risposte

Ordina per

In evidenza
In evidenza
Più recenti
Più popolari
Con risposta
Con miglior risposta
Senza risposta
RogerStyle91
Salve ragazzi devo svolgere questo esercizio: " Fissato un riferimento cartesiano monometrico ortogonale di un piano della geometria elementare,determinare le due circonferenze di raggio 1 e tangenti a s : x − y + 2 = 0 nel punto P (0, 2)." Il problema è che non riesco a capire come ottenere le coordinate del centro con i dati proposti visto che mi servono per il calcolo della circonferenza. Avevo pensato alla formula della distanza tra una retta e un punto generico (x,y) ma non riesco ...

Alexis99
Problemi con dati incognita risolvo In un trapezio i due angoli adiacenti alle base maggiore misurano rispettivamente 50° 35' e 85° 40'.Quanto misurano quelli adiacenti alla base minore? (RISULTATO 129° 25'; 94° 20') Un trapezio ha due angoli opposti supplementari e uno di essi misura 65°.Calcola la misura degli altri angoli del trapezio e verifica che tipo di trapezio è. Un trapezio ha un angolo adiacente alla base maggiore ampio 86° e l'altro inferiore a questo di 34°.Calcola la ...
1
9 set 2011, 14:22

ellytvtrb
Ho f(x,y) = y^4 - 3 x^4 - 2x^2*y^2 - y^2 +3x^2 Ho già trovato punti stazionari , matrice hessiana con determinante, gradiente, punti di sella , e Max e minimo della funzione. orA come faccio per trovare Max e minimo di questa funzione rispetto a un insieme d= { x,y | x>=0 , -(radice di 3)x
1
11 set 2011, 02:09

Sk_Anonymous
Buongiorno a tutti ! Sto provando a risolvere questo esercizio di Analisi Funzionale,ma ho dei dubbi ! L'esercizio è il seguente : " Sia $ C [0,1] $ lo spazio di Banach delle funzioni continue $ u:[0,1] \rightarrow R $ con la norma del massimo e sia $ {u_n}_n \subset C [0,1] $ una successione di funzioni equicontinue.Sia $ K \subset[0,1] $ l'insieme $ K:={x \in [0,1] | {u_n(x)}_n \text { è di Cauchy} } $.Si dimostri che K è chiuso . Allora: ${u_n}_n$ sono equicontinue,quindi $\forall \varepsilon_1 >0 \exists \delta>0 : $ per $ x,y \in [0,1] |x-y |< \delta \Rightarrow |u_n(x)-u_n(y)|< \varepsilon_1 $; inoltre le ...

ansioso
ciao ragazzi, ho dei dubbi su come procedere per lo svolgimento degli esercizi per determinare il carattere di una serie: Es. devo studiare la convergenza della serie $\Sigma_(n=1) ^(\infty) \frac{(n+1)!}{(n^2n!)}$ Per verificare la convergenza da dove dovrei partire?? Io parto dal criterio del rapporto perchè mi sta simpatico... Applico il criterio del rapporto ottengo quindi $\lim_(x to +\infty) \frac{(n+2)!}{((n+1)^2(n+1)!)} \frac{n^2n!}{(n+1)!} = \lim_(x to +\infty) \frac{(n+2)(n+1)!}{ (n+1)^2(n+1)!} \frac{n^2n!}{(n+1)n!}=\lim_(x to +\infty) \frac{n^2(n+2)}{n+1}^3=n^3/n^3=1$ a questo punto essendo il lim pari all'unità non si può dir niente e dato che mi hanno riferito dell'esistenza di un teorema che ...
8
10 set 2011, 11:42

baldo891
Un pianeta di massa $M$ si trova in un'orbita attorno al sole di eccentricità$e=1-\alfa$ con $\(alfa)$ molto minore di uno.Si assuma che il moto del sole si possa trascurare e che sul sistema agiscano solo forze gravitazionali.Quando il pianeta si trova nella posizione di massima distanza dal sole viene colpito da una cometa di massa $m$ molto minore della massa del pianeta,lungo una direzione tangenziale.Supponendo che la collisione sia completamente ...

Elly1991
Calcolare al variare di $\rho$ appartenete a R, il limite $\lim_{n \to \infty}\1/k^\rho\sum_{k=n}^\{7^n}\{1/k}$ io pensavo di risolverlo ponendo la sommatoria tra gli integrali $\int_n^(n+1) (1/x) dx$ < $\lim_{n \to \infty}\1/k^\rho\sum_{k=n}^\{7^n}\{1/k}$ < $\int_(n-1)^(n) (1/x) dx$ vorrei sapere il criterio per trovare a e b dell'integrale, e a quale teorema potevo riferirmi; perchè vedendo altri esercizi a volte la parte sopra e sotto della sommatoria rimangono invariate per l'integrale a sinistra
2
10 set 2011, 17:57

obelix23
ciao non ho capito bene quando esiste un unico omorfismo??qualcuno me lo potrebbe spiegare,perfavore??ho l esame tra pochi giorni!!grazie
18
8 set 2011, 11:38

corsibu
Salve a tutti, ho il seguente problema e vorrei trovare un algoritmo per risolverla : Dati n oggetti ognuno con peso diverso, trovare un modo per distribuire gli oggetti in j scatole (j
8
10 set 2011, 17:18

Andrea902
Buonasera a tutti! Desidererei trovare la spline cubica che approssima alcuni dati in una tabella. In rete ho trovato http://it.wikipedia.org/wiki/Interpolazione_spline. Tuttavia eseguendo il procedimento descritto relativamente all'intervallo $[0;1]$, non ottengo la funzione scritta. Non vorrei avere interpretato in modo errato il sistema riportato nella pagina web di cui sopra: $a_k$, $a_{k+1}$, e tutte le altre incognite le posso brevemente chiamare $a$, $b$, ...

Seneca1
Sia $f : QQ^3 \to QQ^3$ l'endomorfismo definito dalle condizioni: $f(1 , 1 , 0 ) = (3 , 3 , 0)$ $f(0 , 1 , 1 ) = (1 , 3 , 5)$ $f(1 , 0 , 2 ) = (9 , 0 , 8)$ Per prima cosa volevo scrivere la matrice di $f$ rispetto alla base canonica di $QQ^3$. Ho trovato: $M_E (f) = 1/3 ((13 , - 4 , 7 ), (0 , 9 , 0), ( -2 , 2 , 13 ))$ E' corretta? E, cosa più importante, era necessario farlo? Seconda cosa: il polinomio caratteristico ha solo una radice razionale. Giusto? Grazie.
2
10 set 2011, 18:55

kuzmanovicd@virgilio.it
la somma di due angoli misura 349°34'28".calcola l'ampiezza dei due angoli sapendo che la misura del secondo supera il doppio dell'ampiezza del primo di 12°46'28".kome si fa

kioccolatino90
Ragazzi ho una equazione un pò impicciosa, di cui non riesco a calcolare il risultato.... l' equazione è: $log(3x-2)-1/(x+1)=0$ ora riscrivo la funzione dando il minimo comune multiplo: $((x+1)log(3x-2)-1)/(x+1)=0$ tale equazione è verificata quando il numeratore è uguale a zero ovvero devo risolvere: $(x+1)log(3x-2)-1=0$ $rarr$ $(x+1)log(3x-2)=1$ cioè $(x+1)=1$ e quando $log(3x-2)=1$ però non sono sicuro che così vada bene, sto sbagliando qualcosa e non capisco cosa....
2
10 set 2011, 17:27

giulia9999999
matematica????' x : (1/2 - x ) = 2/3 : 4/3 (5/3 + x ) : 9/4 = x : 5/6 3/5 : 2/5 = ( x + 1/2 ) : x
1
10 set 2011, 14:24

giulia9999999
matematicaaa????????????? (32 - x ) : 40 = x : 24. x :60 =( 16 + x ) :80 . (3/2 + x ) : 5/4 = x : 3/4 (45+x) : 48 = x : 3/4 9 : x = 27 : ( 108- x ) non mi vengono i risultati giussti aiutatemi !...
1
10 set 2011, 14:18

gabry451
Una matrice diagonale è quella matrice D tale che $D= P^-1 * A * P $ . Ho notato che se è possibile fare la diagonalizzazione, la matrice diagonale contiene gli autovalori sulla diagonale e tutti gli altri elementi a 0. Ora mi chiedevo, c'è qualche eccezione a questo o è sempre così? Nel caso abbiamo tutti gli autovalori con moltiplicità algebrica 1 avremo su D gli autovalori sulla diagonale, ma accade lo stesso con moltiplicità algebrica 2 (sempre se sono rispettate le condizioni per la ...
1
10 set 2011, 18:16

Krocket
Boungiorno, ho un paio di domande sui limiti: 1)$ lim_(x,y -> 0,0) (e^(x^3+y^2)-1)/(x^3+y^3+x^6+y^8) $ per $x -> 0$ si ha $ lim_(x -> 0) (e^(y^2)-1)/(y^3(1+y^5)) = (e^(y^2)-1)/(y^3(1+y^5))$ per $y -> 0$ si ha $ lim_(y -> 0) (e^(x^3)-1)/(x^3(1+x^3)) = (e^(x^3)-1)/(x^3(1+x^3))$ Vedo che i limiti sono diversi, quidi posso concludere che il limite non esiste? Oppure dovrei studiare per quali valori $(e^(y^2)-1)/(y^3(1+y^5)) = (e^(x^3)-1)/(x^3(1+x^3))$ se cosi fosse dopo come procedo? Il limite lungo tutte le rette e in coordinate polari viene $ oo $ 2) $ lim_(x,y -> 0,0) (y^2sinx)/(2(cosy-1)x) $ per $x -> 0 $ il limite e' $0/0$ per ...
2
10 set 2011, 12:45

nato_pigro1
$X={u in C^1([0,2],RR): u(1)=0}$ norma in $X$ è definita come $p(u)=max{|u'(t)|:tin[0,2]} AA u in C^1([0,2],RR)$ Stabilire se il funzionale lineare $L:u in X -> \int_{0}^{2} u(t) dt in RR$ è continuo. Devo cercare quindi di trovare $MinRR$ tale che $|L(u)|<=M*p(u)$ $|\int_{0}^{2} u(t) dt|=|\int_{0}^{2}\int_{1}^{t} u'(s) ds dt|<= \int_{0}^{2} (max_{1<s<t} {|u'(s)|}*\int_{1}^{t} ds) dt$ poi tiro fuori dall'integrale il massimo maggiorandolo con il massimo su tutto $[0,2]$ (che è la norma che voglio) ma mi resta l'integrale di $(t-1)$ che è $=0$... dove sbaglio? (sorry titolo, non ci ho pensato per ...

melli13
Sia R un anello. Far vedere che esiste un solo omomorfismo di anelli da $ZZ->R$ Qui non so proprio da dove iniziare...volevo utilizzare il teorema di omomorfismo ma non ci riesco...potete darmi qualche dritta..?vi ringrazio per il vostro costante aiuto!!!

gaten
ragazzi è giusto questo ragionamento: Considerato il polinomio $f=x^4-4$, si dica se le seguenti affermazioni sono vere o false, giustificando le risposte. i) esiste un campo F tale che $f in F[X]$ ammette in $F$ esattamente due radici distinte; ii) esiste un campo F tale che $f in F[x]$ non ammette in $F$ nessuna radice; iii) esiste un campo F tale che $f in F[x]$ sia irriducibile. in $F=R$, il polinomio ...