Analisi matematica di base
Quando all'Università i problemi con la matematica tolgono il sonno, cerca aiuto qui
Domande e risposte
Ordina per
In evidenza

Buongiorno a tutti,
Ho ripreso gli studi dopo un lungo stop e mi sto perdendo in un bicchier d'acqua e avrei bisogno di un aiutino.
La funzione da integrare è \( \int x^2 (y - x^3) e^{y+x^3} dx dy \)
L'insieme di integrazione è \( { (x,y): x^3≤y≤3 , x≥1} \)
La mia idea (e credo sia corretta) è di sostituire \( u= y-x^3\) e \( v=y+x^3 \)
Il mio problema è ricalcolare gli estremi di integrazione nelle nuove variabili, potreste darmi una mano per favore?
Dopo qualche capriola credo di essere ...

Ciao a tutti, dovrei calcolare l'area delimitata tra $y=e^x, y=2e^(-x), y=2e^x, y=3e^(-x)$. Devo ammettere che non ho idea di come fare. Direi che questo insieme è un dominio semplice sia rispetto all'asse y che rispetto all'asse x. Il problema è che per usare le formule di riduzione su un dominio semplice l'insieme deve essere delimitato da sole 2 curve e non 4. Mi sembra quasi che non sia possibile farlo con un integrale doppio. grazie in anticipo per l'aiuto.
Salve , vorrei chiarire alcuni dubbi sull'integrabilità di una funzione. Da un teorema si dice che una funzione è integrabile se questa funzione , preso un intervallo [a,b], è continua (o generalmente continua). Dalle definizioni date dal professore risulta che una funzione è generalmente continua se questa è limitata ed ha un numero finito di punti di discontinuità.
Detto questo , ho provato a fare alcuni esercizi rilasciati dal professore ed ho notato alcune incongruenze :
1) ...
Volevo chiedere una delucidazione sulla dimostrazione della convergenza del prodotto di Cauchy di due serie, presente al seguente indirizzo: https://mate.unipv.it/gilardi/WEBGG/PSPDF/prod-Cauchy.pdf.
Quando considera [le sommatorie sono da 0 a $n$] $\sum a_iD_{n-i}$ (righe 21 sig.), essenzialmente dimostra che $|\sum a_iD_{n-i}|\leq\sum |a_iD_{n-i}|\leq ... \leq \epsilon (A'+M) $, quindi la serie è infinitesima. Ma anche $|(\sum |a_iD_{n-i}|)|=\sum |a_iD_{n-i}|\leq \epsilon (A'+M)$, per cui anche $\sum_{n=0}^\infty |a_iD_{n-i}|=0$, il che direi essere vero solo se sempre $a_iD_{n-i}=0$, cosa che mi sembra, in generale, falsa. ...

Buongiorno, non so se sia la sezione giusta essendo la domanda incentrata su un concetto di Automatica(essendo però i numeri complessi a farmi incartare, pubblico qui).
Io ho una funzione di trasferimento L(S)= $ \frac{50}{(1+0.1s)(1+s)(1+10s)s} $ corretta.
Ciò che mi serve attualmente è trovare la pulsazione critica $\omega_c$, calcolabile trasformando la S in $j \omega_c$ nella L(S)(quindi diventa L($ j\omega_c $) ed eseguendo
$|L(j\omega_c)|=1$
Ciò teoricamente non dovrebbe essere un problema, ...

Salve, non riesco a dimostrare che se $a>=0 $ allora $-a<=0$
Mi potete dare un suggerimento, grazie,

Salve a tutti. Stavo calcolando il dominio della seguente funzione:
$y=sqrt(((3x-|x+4|-1)/(6-|1-x^2|)))$.
Per iniziare ho scritto le due seguenti considerazioni:
$1)$ $6-|1-x^2|!=0$
$2)$ $(3x-|x+4|-1)/(6-|1-x^2|)>=0$
Quindi:
$1)$ Consideriamo che
$|1-x^2|=1-x^2$ se $1-x^2>=0$ $hArr$ $x^2<=1$ $hArr$ $-1<=x<=1$
$|1-x^2|=-1+x^2$ se $1-x^2<0$ $hArr$ $x^2>1$ ...
Ciao a tutti
La serie in questione è la seguente
$\sum_{n=1}^{+\infty} \frac{x^n}{\sqrt{n}}$
e, come da titolo, viene richiesto di studiare per quali $x \in \mathbb{R}$ converge.
L'esercizio è preso dalle note del mio ex professore di Analisi 1 e viene proposta la seguente soluzione, della quale non mi è chiara una conclusione che viene data alla fine.
Dato che il segno è variabile a causa della potenza al numeratore come prima cosa studio l'assoluta convergenza.
$\sum_{n=1}^{+\infty}|\frac{x^n}{sqrt{n}}|=\sum_{n=1}^{+\infty}\frac{|x^n|}{sqrt{n}}=\sum_{n=1}^{+\infty}\frac{|x|^n}{sqrt{n}}$
e, sfruttando il criterio della ...

Posto $a_1a_2a_3....a_n =1 rArr a_1+a_2+a_3....a_n >=n$ $<strong>$
Base induttiva: $P(1)= a_1=1>=1$ vero
Ip. Induttiva: supposto $ n AA NN , P(n) $ dimostrò la $<strong>$ per $P(n+1)$:
Per Ip. $ an>=n$ segue che
$P(n+1)= a_n + a_n +1= n + a_n + 1>=n+1$
Resta pertanto dimostrata la $<strong>$: $ P(n) ^^ { n AA NN , P(n) rArr P(n+1)} rArr AA n, P(n)$
Va bene? Grazie

Ho un dubbio: da qui
$a^{n + 1} + \{[((n),(1)) + ((n),(0))]a^n b^1 + [((n),(2)) + ((n),(1))]a^{n - 1}b^2 + ... + [((n),(n)) + ((n),(n - 1))] a^1 b^n\} + $
$ + b^{n + 1} $
come si arriva a questo punto?
$\sum_{k = 1}^n [((n),(k)) + ((n),(k - 1))]a^{n - k + 1}b^k $
Grazie

Buonasera,
vorrei chiedere un aiuto su un dubbi oche mi sono creato e su cui ragiono da qualche ora senza aver capito il perché funzioni.
Il tutto nasce dal concetto di disequazioni irrazionali in cui andiamo a elevare i due membri al quadrato. E stavo cercando di capire il perché delle regole imposte nei famosi due sistemini risolutivi di una generica $sqrt(f(x))>g(x)$. Tuttavia il discorso vorrei farlo con $a>b$.
Mi spiego. Il mio dubbio sorge perché non capisco come porre b>0 ...

Se ho una funzione y=f(t) dipendente dalla variabile t, che suppongo per comodità derivabile infinite volte, se faccio la derivata ottengo y' = f'(t) se ora derivo y' rispetto alla variabile y ottengo 0 perchè y' non dipende dalla variabile y? Però mi è venuto un dubbio pensando alla funzione esponenziale y=e^t, in questo caso y'=y quindi se faccio la derivata di y' rispetto a y dovrei ottenere 1?

Salve,
devo dimostrare che $EE n, k in NN: n = k^2$ e lo voglio fare per assurdo:
$AA n, k in NN not P(n,k)$ quindi avrò $ AA n, k in N, n != k^2$
Basta prendere $n in NN : n= a* a$
Per definizione di potenza in $RR$: $a*a = a^2 rArr n= a^2 $, pertanto siamo giunti a una contraddizione e
$EE, n, k in NN: n = k^2$
Può andare? Grazie tante
:
Sia $f:[a,b]->RR$ e sia $sigma={a=x_0<...<x_n=b}$ scomposizione di $[a,b]$, presi $xi_kin(x_(k+1),x_k)$, se $finC^2[a,b]$ allora $EExiin(a,b)$ tale che: $\sum_{k=0}^{n-1}f''(xi_k)(x_(k+1)-x_k)^3=f''(xi)\sum_{k=0}^{n-1}(x_(k+1)-x_k)^3$.
Provo a dare una mia dimostrazione:
So che esistono il minimo e il massimo di {$f''(xi_k)|kin{0,...,n-1}}$ poichè è un insieme finito.
$min_{kin{0,...,n-1}}f''(xi_k)\sum_{k=0}^{n-1}(x_(k+1)-x_k)^3<=\sum_{k=0}^{n-1}f''(xi_k)(x_(k+1)-x_k)^3<=max_{kin{0,...,n-1}}f''(xi_k)\sum_{k=0}^{n-1}(x_(k+1)-x_k)^3$
da cui:
$min_{kin{0,...,n-1}}f''(xi_k)<=(\sum_{k=0}^{n-1}f''(xi_k)(x_(k+1)-x_k)^3)/(\sum_{k=0}^{n-1}(x_(k+1)-x_k)^3)<=max_{kin{0,...,n-1}}f''(xi_k)$
Sapendo che $f''$ è continua su $[a,b]$ poichè $finC^2$ per Weiestrass esistono massimo e minimo di ...

Se ho un sistema di equazioni differenziali (in fisica per esempio c'era un esercizio con due equazioni del primo ordine per il campo magnetico e il campo elettrico accoppiate) posso derivare un'equazione (o entrambe) per ottenere la soluzione? Oppure potrei ottenere una soluzione particolare e non quella generale? Lo chiedo perchè appunto mi era capitato quell'esercizio di fisica in cui si derivava una delle due equazioni per disaccoppiarle e risolvere poi il sistema, ma mi era venuto il ...

Per arrivare al teorema della radice ennesima reale di un numero positivo il mio testo di Analisi si serve di un teorema sugli zeri di un polinomio a coefficienti reali, per cui si serve di un altro lemma che recita:
Sia \(P(x) = \sum_{i=0}^k a_i x^i \) un polinomio a coefficienti reali. Se per un certo \(x_0 \in R\) si ha \(P(x_0) > 0\), allora esiste un intorno \(I(x_0, r)\) di \(x_0\), tale che, per ogni \(x \in I(x_0, r)\), risulta \(P(x) > 0\).
Segue da precedenti ...
Cari analisti, dopo molta fatica sono riuscito a mostrare che una primitiva di $sqrt(x^2-1)/(x^2)$ è
$ln(|x+sqrt(x^2-1)|)-sqrt(1-1/(x^2))$
Tuttavia poi l'ho messo su Wolfram Alpha e mi ha risposto così. Lo riporto qui:
$-(sqrt(x^2-1) ((x sin^(-1)(x))/(sqrt(1-x^2)) +1))/x$
Non ha proprio senso, a cominciare dal fatto che compaiono sia $sqrt(x^2-1)$ che $sqrt(1-x^2)$.
Sembra che sia passato a una formulazione coi numeri complessi e che però poi non sia riuscito a tornare ai reali. E' una delusione per me, avevo sempre contato su ...
4
Studente Anonimo
15 lug 2023, 21:32
Ciao a tutti!
Sia $f:(a,b] \to \mathbb{R}$ una funzione a valori positivi ed asintoticamente equivalente all'infinito campione $\frac{1}{(x-a)^{\alpha}$ per $x \to a^+$, allora
$\int_a^b f(x)dx$ converge $iff \int_a^b\frac{1}{(x-a)^{\alpha}dx$ converge $iff \alpha <1$.
Cosa dire però nel caso in cui la funzione sia illimitata nell'altro estremo di integrazione, ovvero $f:[a,b) \to \mathbb{R}?$ Esiste un'equivalente "infinito campione" con cui confrontare la funzione integranda?
Ad esempio, nella soluzione di un esercizio ho ...

Buongiorno, mi sono bloccato con il seguente limite $lim_((x,y) to (0,0))(x^2y)/(x^4+y^2)$.
In particolare, passando alle coordinate polari ottengo
$f(x,y)=f(rho,beta)=(rho^2cos^2(beta)sin(beta))/(rho^4cos^4(beta)+sin^2(beta))$
ora la funzione $f(rho,beta) $tende a zero quando $rho$ tende a zero, per ogni $beta in[0,2pi]$, però non uniformemente. L'autore per dimostrarlo procede nella seguente maniera, considera la curva $y=x^2$ per cui $rho=sin(beta)/cos^2(beta)$, dopodiché valuta la funzione con tale valore, per cui ottiene $f(rho,beta)=1/2$ essendo ...

Ciao a tutti, sono al primo anno di matematica e mi servirebbe un aiuto con alcune dimostrazioni
In particolare, vorrei dimostrare che, dati due insiemi non vuoti $A,B sube RR$ separati con $a <= b AA a in A, AA b in B$
Gli insiemi sono classi contigue di numeri reali, quindi vale la proprietà
$AA \epsilon>0 EE a in A, b in B : b-a< \epsilon$ (1)
$iff$ l'elemento separatore è unico, quindi $EE! k: a<=k<=b AA a in A, AA b in B$ (2)
$iff$ InfB=SupA (=k) (3)
Per quanto riguarda 1 $=>$ 2 ho trovato una ...