Analisi matematica di base
Quando all'Università i problemi con la matematica tolgono il sonno, cerca aiuto qui
Domande e risposte
Ordina per
In evidenza
Ciao a tutti, mi trovo a studiare le funzioni in più variabili e quello che vorrei capire è una differenza concreta tra le seguenti definizioni:
-Derivabile
-Differenziabile
-Di classe C1.
Inoltre vorrei capire un procedimento generale per determinare se la funzione è continua, derivabile, differenziabile e di classe C1 in un dominio.
Queste sono le nozioni che ho, ma che mi risultano molto confuse.
Anzitutto negli esercizi capita spesso una funzione di questo tipo:
...
Buongiorno a tutti,
Ho dei dubbi nella risoluzione di questo esercizio di massimi e minimi, la funzione in questione è:
$ f(x,y,z) = 3y^2z^2-5x^2y-2z^2+4x^2 $
Ho trovato il suo gradiente e ho eguagliato gli elementi del gradiente a 0, il sistema risulta essere:
\begin{cases} -10xy + 8x = 0 \\ 6yz^2 -5x^2 = 0 \\ 6y^2z - 4z = 0 \end{cases}
Risolvendo questo sistema trovo i punti critici della funzione, che mi sembrano essere tutti i punti P(0,y,0).
Calcolo poi la matrice hessiana:
\begin{bmatrix} -10y+8 & ...
Salve,
scrivo per chiedervi un aiuto riguardo un integrale generalizzato con parametro che ho provato a fare, ma la soluzione del libro non coincide perfettamente con la mia:
$\int_1^∞frac{(x-1)^α * log(x)}{1+log(x)^2}dx$
Ho scritto l' asintotico nell' intorno di +∞, giungendo quindi a tale integrale:
$\int_1^∞frac{x^α * log(x)}{log(x)^2}dx$
Portando giù $x^α$ e il $log(x)$, ho confrontato l' integrale così ottenuto con l' integrale notevole di Abel.
Pertanto il suddetto integrale dovrebbe convergere per ...

Sia $f:R->R$ una funzione convessa. Siano $f(0)=5$ $f’(1)=-2$ $f(2)=2$ $f(5)=2$ $f’(6)=1$.
Cosa possiamo dire su $f(5/2)$ ?
Utilizzando le definizioni di funzione convessa sono riuscito a dimostrare che $f(5/2)<2$ sapendo che il grafico della funzione si trova sotto la secante passante per i due punti in cui la funzione assume valore 2. Il mio professore poi ha detto e non ho capito perché che dato che il grafico della funzione ...
Devo studiare il dominio di $f(x,y)=ln(x^2y^2-2xy+1)$.
Deve essere ovviamente $x^2y^2-2xy+1>0 <=> xy(xy-2)> -1$.
Io ho pensato di studiare il segno dei due fattori nel membro di sinistra e poi confrontare il risultato con $y=-1$, però di disequazioni in due variabili ne ho risolte pochissime e non è che abbia proprio un metodo definitivo, per questo sono ben accetti consigli.
Comunque, $xy>0 <=> x>0 ^^ y>0 vv x<0 ^^ y<0$. $xy-2>0 <=> y>2/x$. Questa è un'iperbole equilatera riferita agli asintoti, per studiare il segno di ...

Ciao a tutti non riesco a capire bene il significato della definizione con delta-epsilon di successione convergente, ma anche divergente. Per esempio in questa proposizione:
Data $a_n$ convergente ad $l$ e $b_n$ divergente a $+infty$ allora $a_n+b_n$ diverge a $+infty$
La logica della dimostrazione l’ho capita ma mi tornano poco alcune cose,
Per $a_n$ ho che $AA\epsilon>0EEn_epsilon$ t.c. $|a_n-l|<epsilon$ se ...

Dire quando converge la serie al variare del parametro $alpha$:
$\sum_{n=0}^\infty\cos(npi/2)(n^(1/n)-(-1)^n)n^alpha$.
Mi sono accorto che la successione dei termini dispari è nulla quindi la serie con argomento la successione dei termini dispari converge a zero, poi ho considerato la successione dei termini dispari che mi viene $b_k=(-1)^k((2k)^(1/(2k))-1)(2k)^alpha$, sono riuscito a trovare che $alpha<1$ dalla condizione necessaria per la convergenza e che $alpha<=0$ applicando l’assoluta convergenza. Mi manca da analizzare ...
Scusate se oggi vi tartasso con quest'argomento, ma ho bisogno di capire se è un esercizio che riesco a svolgere con scioltezza o se commetto ancora banali errori.
Devo trovare le curve di livello di $f(x,y)=5((9x^2-4y^2)/36)^3$
Intanto il dominio di $f$ è $RR^2$
Quindi:
$5((9x^2-4y^2)/36)^3 = k <=> 5 (x^2/4 - y^2/9)^3=k <=> (x^2/4-y^2/9)^3 = k/5$. Ora, se $k=0$, estraendo il cubo ottengo: $x^2/4 - y^2/9 = 0 <=> y^2=9/4x^2 <=> y=3/2x$. Quindi, se $k=0$ ottengo una retta.
Se $k!=0$, ho che $root(3)(5/k) (x^2/4 - y^2/9) = 1$, e queste sono ...
Ho un dubbio sullo svolgimento che è scritto sul mio testo riguardo questo esercizio: determinare le curve superiori di livello della funzione $f(x,y)=(e^(x+y) + 1)/(e^(x+y))$.
Se ho capito bene l'interpretazione di quello che c'è da fare, si tratta di intersecare $f(x,y)$ con un piano $pi(x,y)=k$ e proiettare su $Oxy$ i punti di $f(x,y)$ di altezza maggiore di $k$.
Il mio libro procede così:
$(e^(x+y)+1)/(e^(x+y)) > k => e^(x+y)+1>ke^(x+y) => e^(x+y)(1-k)> -1 => e^(x+y)>1/(k-1)$. Qui il verso della disequazione non cambia, ...
Come si calcolano i limiti in $RR^2$? Ad esempio, $lim_((x,y)->(0,0)) (xy)/(x^2+y^2)$.
Sul mio libro è un argomento che non è praticamente trattato, ma siccome c'è questo (unico) esempio di funzione discontinua (in questo caso in $(0,0)$, vorrei almeno capirlo appieno.
In $RR$ in casi come questo (forma indeterminata $0/0$) scomponevo numeratore e denominatore però in questo caso non mi viene in mente nessuna scomposizione. Consigli?
Devo trovare le curve di livello di $f(x,y) = ln(x^2-y+2)^2$
Dominio di $f$: $D_f: y!= x^2+2$
Passo alla risoluzione:
$ln(x^2-y+2)^2 = k <=> (x^2-y+2)^2 = e^k <=> x^4-2x^2y+4x^2+y^2-2y+4-e^k=0$. Sviluppare il quadrato non mi permette di riconoscere che tipo di conica ottengo, quindi provo ad estrarre la radice: $x^2-y+2 = sqrt(e^k) =>y= x^2+2-sqrt(e^k)$. Quindi le curve di livello sarebbero delle parabole. E' corretto lo svolgimento? Ci ho pensato ora ad estrarre la radice
Non ho mai capito perché $|x+y| <= |x|+|y|$ venga chiamata "disuguaglianza triangolare". Algebricamente questa cosa l'avevo vista un po' di tempo fa e dimostrarla è abbastanza facile, però cosa c'entrano i triangoli?
Io so che in un triangolo un lato è minore della somma degli altri due, ma le lunghezze dei lati di un triangolo per definizione sono sempre numeri non negativi e quindi se parliamo di triangoli si avrebbe $|x+y|=|x|+|y|, x,y>=0$.

Ciao, qualucno potrebbe gentilmente aiutarmi su un dubbio molto ma molto stupido ma che non riesco a capire appieno? Vi ringrazio anticipatamente.
io mi trovo con una soluzione di una eq differenziale che scaturisce da un problema fisico che è:
$f(x,y)=(Acos(alphax)+Bsin(alphax))(Ccos(betay)+Dsin(betay))$ (**)
e ho le condizioni al contorno date dal problema (fisico) che mi dicono:
1) per ogni $y$ a $x=0$, $f(0,y)=0$
2) per ogni $y$ a $x=a$, $f(a,y)=0$
poi ce ne sono ...
Stavo ripassando alcune definizioni sugli insiemi aperti, chiusi, sulla frontiera ecc. e vorrei avere conferma riguardo un modo per determinare se un insieme sia chiuso o meno. Fino ad ora per determinare se un insieme fosse chiuso ragionavo sempre sul complementare: se questo era aperto allora l'insieme di partenza era chiuso. Però credo sia equivalente dire che un insieme è chiuso se e solo se contiene la sua frontiera. Questa definizione credo si possa estendere anche nel caso in cui ...
Credo che l'enunciato di questo teorema del mio libro sia sbagliato, lo riporto qui per chiedervi conferma:
Teorema continuità di una funzione composta: sia $f: RR^2 \toRR$ continua in $(x_0,y_0)$ e sia $g: RR \toRR$ continua in $f(x_0,y_0)$, allora la funzione composta $h = g(f(x,y))$ è una funzione continua in $(x_0,y_0)$.
Scusate ma come fa $g$ ad essere continua in $f(x_0,y_0)$ se g va da $RR$ in $RR$?
Forse mi sono ...
Sto risolvendo il problema di Cauchy seguente:
\[
\begin{cases}
y''(t) - 4y'(t) + 8y(t) = e^{-2t} \\
y(0) = -1 \\
y'(0) = 0
\end{cases}
\]
Scrivo il polinomio caratteristico P \left( \lambda \right) dell'equazione differenziale omogenea:
\[ P \left( \lambda \right) = \lambda^2 - 4\lambda + 8 \]
trovandone due radici complesse:
\[
\lambda_1 = 2 + 2i \qquad \lambda_2 = 2 - 2i
\]
pertanto le soluzioni dell'omogenea associata sono date da:
\[
y(t) = c_1 e^{2t} \cos \left( 2t \right) + c_2 e^{2t} ...
Sia $f(x,y)= x^2+y^2-1$ e $g(w) = sqrt(w) + ln(w)$. Se io volessi calcolare $g(f(x,y))$ otterrei $g(f(x,y))=sqrt(x^2+y^2-1) + ln(x^2+y^2-1)$. Questo risultato è corretto? Datemi conferma, siccome sono alle prime armi con le funzioni in due variabili.
Ma se invece volessi calcolare $f(g(w))$, come dovrei fare? La composizione di funzioni in generale non è commutativa e mi aspetto che la cosa valga anche in $RR^2$, però la differenza qui è che voglio applicare una funzione $g(w)$, così ...

Salve, ho bisogno di un parere su un integrale, sicuramente c’è qualcosa che mi sfugge e sono qui per chiedervi cortesemente una mano
$ int_(0)^(1) y*(-lny) dy=<br />
-(lny)*(y^2/2)- int_(0) ^ (1) - (1/y)*(y^2/2) dy = -((y^2*lny)/2)+1/2* int_(0)^(1) y dy= -((y^2*lny)/2)+1/4 $
Questa è la mia soluzione, integrando per parti, sul foglio di esercizi la soluzione è semplicemente 1/4
Sicuramente è qualcosa che non ricordo per via del tempo, ringrazio anticipatamente chi vorrà darmi una mano

Mentre scrivevo lo sviluppo in serie di Taylor di $exp(-n)$ mi è sorto un dubbio.
Ricordando che
$exp(x) = 1 + x + x^2/2 + o(x^2)$
vale $\forall x$ reale, allora ponendo
$x := -n$
ottengo
$exp(-n) = 1 - n + n^2/2 + o(n^2)$.
Il limite all'infinito di $exp(-n)$ è chiaramente $0$, ma se svolgo il limite dello sviluppo, ovvero
$\lim_{n->\infty} 1 - n + n^2/2 + o(n^2)$
per la gerarchia degli infiniti il termine al quadrato è dominante e quindi il limite è $+\infty$.
In generale, aggiungendo ...

sera, volevo capire un passaggio del libro che non capisco a fondo.
devo calcolare il gradiente per r di: $nabla_x(1/(|vecr-vecr'))$
Io ho operato come (faccio solo la componente x): $[nabla_r(1/sqrt((x-x')^2+(y-y')^2+(z-z')^2))]_x=$
$=(sqrt((x-x')^2+(y-y')^2+(z-z')^2))^(-1/2)=-1/2(sqrt((x-x')^2+(y-y')^2+(z-z')^2))^(-3/2)*2(x-x')=(x-x')/(|vecr-vecr'|^3)$
evidentemente y,z si comportnao uguali e ho: $(r-r')/(|vecr-vecx'|^3)$
Detto ciò il suggerimento del libro è il seguente (per svolgere il calcolo) - e io non capisco bene il suggerimento- :
$d/(dx)|g(x)|=(g(x))/(|g(x)|)(dg)/(dx)$
Cioè sembra quasi suggerire di chiamare $|vecr-vecr'|=|g(x)|$ e fare la derivata del ...