Analisi matematica di base
Quando all'Università i problemi con la matematica tolgono il sonno, cerca aiuto qui
Domande e risposte
Ordina per
In evidenza

Ciao a tutti, è da un bel po' di tempo (vista l'ora) che sto provando a capire come invertire le funzioni in più variabili e non ci riesco.
Vorrei proporvene due e inizio con la prima, la seconda vediamo se con i vostri aiuto so risolverla per esercizio.
io ho $(u,v)->(u,v,sqrt(1-u^2-v^2))$ vorrei invertirla ma non riesco perché è $RR^2->RR^3$ eg ià questo mi confonde molto, è chiaro inoltre che $u^2+v^2<=1$.
Mi aiutereste a invertirla e mi aiuereste a capire i passaggi cosi che possa ...

Ciao a tutti!
Mi sono imbattuto in questo limite:
\[
\lim_{x \to +\infty} x^2 \left( \sin \frac{1}{x} - \frac{1}{x} \right)
\]
e chiedo conferma/opinioni su come l'ho risolta (nonché anche la correttezza di quanto scritto).
Prima ho fatto un cambio di variabile nel limite e poi ho sfruttato il polinomio di Taylor al terzo grado di $\sin t$:
\begin{align*}
\lim_{x \to +\infty} x^2 \left( \sin \frac{1}{x} - \frac{1}{x} \right) &= \lim_{t \to 0^+} \frac{1}{t^2} \left( \sin t - t ...
Ciao a tutti.
Mi sono imbattuto, come da titolo, nella serie seguente:
\[
\sum_{n=1}^\infty \frac{1}{a_n} \qquad \text{ove} \qquad a_n = n^3 \left( \cos \frac{1}{n} - \frac{n^2 + 1}{n^2}\right)
\]
e non riesco a determinarne il carattere. Per il momento ho solo stabilito che la serie rispetta la condizione necessaria affinché converga. Infatti:
\begin{align*}
\lim_{n \to +\infty} n^3 \left( \cos \frac{1}{n} - \frac{n^2+1}{n^2} \right) &= \lim_{n \to +\infty} n^3 \cdot \lim_{n \to +\infty} ...

[xdom="Steven"]Come leggerete tra poco, questo topic si ripropone di raccogliere materiale libero in rete.
Sarebbe ideale se, per ogni segnalazione, fossero riportati:
- autore
- corso di laurea, sede
- sito web "madre", se esiste
- un piccolo commentino non ci starebbe male
Cerchiamo inoltre di tenere questo topic libero da commenti, discussioni, e saluti. Postare solo per mettere materiale, o in caso aprire un altro topic.
Grazie per ogni contributo![/xdom]
In questo topic vorrei ...

Ciao a tutti,
come da titolo mi sono imbattuto nelle due serie numeriche
\[
\sum_{n=1}^\infty \frac{(-1)^{n!}}{n}; \qquad \sum_{n=1}^\infty \frac{\sin (n!)}{n^2}
\]
ma sono un po' incerto sulla legittimità dei miei ragionamenti.
Per la prima serie, pensavo che si trattasse di una serie a segni alterni, ma dato che $n!$ risulterà sempre in un numero $\geq 0$, risulta:
\[
a_n = \frac{(-1)^{n!}}{n} = \frac{1}{n}
\]
la cui serie diverge. Se questo ragionamento è giusto, non ...
Leggendo qui una discussione in cui si segnalavano possibili spunti da riferire al geniale creatore di WolframAlpha, mi sono spesso chiesto se non potesse risultare carino considerare l'implementazione di un operatore come la tetrazione e non dico di scalare oltre la funzione di Ackermann, perché otterremmo numeroni enormi già per piccoli valori della base e dell'iperesponente, ma volendo...
Considerando una base reale $a$ e un iperesponente $b \in \mathbb{N} \cup \{-1,0\}$, basterebbe prevedere ...
2
Studente Anonimo
3 lug 2024, 17:56

Ciao ragazzi,
mi sto esercitando con i limiti di funzione, e vorrei, se possibile, un vostro parere su questi esercizi. Sono svolti correttamente, secondo voi?
1) $\lim_{x \to \0} x(sen(2x))/(sen^2(3x))$
$x(sen(2x))/(sen^2(3x)) ~~ (x2x)/(3x)^2 = (2x^2)/(9x^2) = 2/9$
2) $\lim_{x \to \infty} x(ln(x+1)-lnx) = lim_{x \to \infty}x(ln(1+1/x)) = lim_{x \to \infty} xln(1) = 0$
3) $\lim_{x \to \infty} e^(sqrt(x^2+x)) - e^(sqrt(x^2-1)) = \lim_{x \to \infty} e^(sqrt(x^2(1+1/x))) - e^(sqrt(x^2(1-1/(x^2))) $
Poichè $sqrt(x^2(1+1/x)) = xsqrt(1+1/x) ~~ x(1+1/(2x)) = x + 1/2$ e
$sqrt(x^2(1-1/x^2)) = xsqrt(1-1/(x^2)) ~~ x(1-1/(2x^2)) = x-1/(2x) $
$ \lim_{x \to \infty} e^(sqrt(x^2(1+1/x))) - e^(sqrt(x^2(1-1/(x^2))) $ $= \lim_{x \to \infty} e^(x + 1/2) - e^(x-1/(2x))$ $ = \lim_{x \to \infty} e^x(e^(1/2) - e^(-1/2x)) = +infty$
Grazie a tutti per l'aiuto
Salve a tutti, avrei bisogno di un opinione riguardo lo studio di questa serie:
\[
\sum_{n=1}^\infty \frac{(1+\sin n)^n}{3^n}
\]
Si tratta di una serie a termini non negativi, ho applicato il criterio del confronto
\[
\sum_{n=1}^\infty \frac{(1+\sin n)^n}{3^n} \leq \sum_{n=1}^\infty \frac{2^n}{3^n} = \sum_{n=1}^\infty \left( \frac{2}{3}\right)^n
\]
Ho poi applicato il criterio della radice
\[
\lim_{n \to +\infty} \sqrt[n]{\left( \frac{2}{3}\right)^n} = \frac{2}{3} < 1
\]
da cui si evince che ...

Ciao a tutti,
sto svolgendo alcuni esercizi sui limiti notevoli e mi sono imbattuta su un limite che non so come calcolare.
$ lim_(x->pi)(cosx+1)/(cos3x+1 $
Ho sviluppato $ lim_(x->pi)(cosx+1)/(4cos^3x-3cosx) $ ma non so proprio come andare avanti da qui. La consegna dice che il limite dovrebbe essere risolto con i limiti notevoli, ma non ho idea di come ricondurmici...

Sera forummisti
Vorrei fare una domanduccia che non ho bene idea come formalizzare.
Il professre ha fatto il seguente discorso: abbiamo una composizione di funzioni $A->B⊆RR^2->C⊆RR^2$
sia $phi∘psi$ tal composizione, e sappiamo che $phi in C^oo$ ma $psi$ no.
Si può pero nel nostro studio vedere $B⊆RR^3$ così come $C⊆RR^3$ e quindi estendere $Phi:RR^3->RR^3$ e qui sappiamo fare le derivate direzionali in ogni direzione ecc.
In pratica il problema ...
$ f(x)=e^x*root(3)((x+2) / (x-3)) $
Avrei bisogno di un aiuto per determinare che tipo di punto di non derivabilità si ha in x = -2. Mettendo la funzione in un elaboratore grafico sembra si tratti di un flesso a tangente verticale, tuttavia calcolando derivata destra e sinistra tramite la definizione ottengo rispettivamente + $ oo $ e - $ oo $ , a suggerire che si tratti di una cuspide.

Vorrei chiedervi gentilmente una mano su una cosa su cui mi sono bloccato.
Se vogli integrare:
$int|f'(-r)|dr$ sostituendo $-r=s$ ho $dr=-ds$ => $-int|f'(s)|ds$ (*)
Però mi dico se procedo così perché non funziona?:
$f(-r)$ lo vedo come $f(g(r))$ di fatto è ua funzione composta.
ora posso derivare per regola della funzione composta: $(d(f(g)))/(dg)*(dg)/(dr)$ ma $(dg)/(dr)=-1$ e quindi:
$-1*(d(f(g)))/(dg)$
ora il punto che è delicato e penso sia qui ...
Buongiorno a tutti, avrei dei dubbi su questo esercizio in quanto una richiesta non sono riuscito a svolgerla mentre le altre tre ho provato a risolverle ma non sono sicuro se il procedimento è corretto.
**TESTO:**
Sia \( f : \mathbb{R} \to \mathbb{R} \) una funzione derivabile infinite volte, tale che
\[ \lim_{x \to +\infty} (f(x) - 2 \sin(x^2)) = 0. \]
Dimostrare che:
i) la funzione non è né concava né convessa;
ii) esistono infiniti punti in cui la funzione si annulla;
iii) esistono ...

Mi crea diversi dubbi questo esercizio
Sia $f(x, y, z) = z^2$ Dimostrare che $f^(-1)(0)$ è una superficie, nonostante il fatto che i suoi punti non siano regolari per f.
1) io ho pensato di calcolarmi il punti di $f^-1$: (x,y,0) e di farmi il gradiente $∇f=⟨0,0,2z⟩$, quindi per z=0 sono non regolari, i restanti sarebbero regolari. tuttavia essendo la controimmagine di zero (x,y,0) direi che non ho punti regolari, tutti sono non regolari.
Tuttavia ...
Buon pomeriggio a tutti,
Mi trovo qui a chiedere aiuto in merito a questo esercizio, in quanto non ho saputo risolverlo da solo.
Il testo mi dà la funzione $f(x, y) = e^{3x}(1 + 25x^2 + 25y^2)$ e mi dà un insieme (non legato alla funzione) $A = \{ (x, y) \in\mathbb{R}^2: 9x^2 + 9y^2 < 1\}$.
Mi viene chiesto di trovare un sottoinsieme infinito di $A$ in cui $f$ sia convessa.
Io personalmente ho dovuto prima capire che "infinito" è inteso come cardinalità. Altrimenti non avrei saputo come farlo dato che ogni ...

Volevo chiedere un aiuto ancora su questi concetti di parametrizzazione per arco lunghezza:
Mi si chiede:
Data una curva $α(t), t ∈ (a, b)$, la curva $˜α(r) := α(−r), r ∈ (−b, −a)$ ha
orientazione opposta. Per definizione, i punti $α(t)$ e $˜α(−t)$ coincidono.
Scelto un tal punto, paragonare i riferimenti di Frenet, la curvatura e la
torsione delle due curve $α, ˜α$.
Si lavori per arco lunghezza
ho pensato di farmi una idea della parametrizzazione ...

Ciao, volevo chiedere una delucidazione su un utilizzo della seguente notazione.
io so che due funzioni f e g sono uguali se e solo se $f(t)=g(t) forall t in RR$
nel contesto delle curve in analisi il professore usa dire:
$gamma(t)=gamma'(s(t))$ e questo mi confonde perché s e t sono due parametri diversi, quindi non posso sfruttare il $forall t$, penso quindi intenda dire che punto a punto le immagni sono uguali?
però non posso affermare che sono la stessa funzione $gamma$ e ...

Non credo di aver capito una cosa riguardo questo concetto:
$int_a^bf(x)dx$
prendo la funzione $g:(b,a)->(a,b), t->a+b-t$
ne consegue: $g'=-1$
quindi: $-1*int_(g^-1(a)=b)^(g^-1(b)=a)f(g(t))dt$
mi aspetterei $-int_b^af(x)dx$ per coerenza
tuttavia:
$int_(g^-1(a)=b)^(g^-1(b)=a)f(a+b-t)dt$
Ho quindi una $f(a+b-t)$, mentre io vorrei una $f(t)$ cosicché: a meno di variabile muta $-int_b^af(x)dx=-int_b^af(t)dt$ e sarei a cavallo... ma io ho $f(a+b-t)$ a rompermi le scatole.
Que sbaglio? non lo capisco.

Ciao, volevo chiarire una cosa che mi lascia dubbioso e temo di non aver afferrato appieno.
Nello studio dell'analisi in più variabili mi è stata definita: differenzaibilità, derivata direzionale, parziale, limiti ecc.
Però non capisco perché non mi sia stata definita (se esiste o meno) e se il concetto avesse un legame col resto di quanto sto studiando di un qualcosa del genere:
io prendo una $F:A⊆RR^m->RR^n$
e definisco il rapporto incrementale: $(f(vecx)-f(vecx_0))/||vecx-vecx_0||$ con ...

Perchè nella seguente funzione non c’è asintoto verticale in X=3? Ho visto su vari libri e viene detto che è una discontinuità eliminabile, che denominatore è numeratore hanno lo stesso fattore. Mi sembrano tutte risposte “operative” ma non riesco trovare un fondamento teorico. L
La funzione è f(x)=(x^2-9)/(x^2-2x-3)