Analisi matematica di base
Quando all'Università i problemi con la matematica tolgono il sonno, cerca aiuto qui
Domande e risposte
Ordina per
In evidenza
Premetto che sono uno studente di ingegneria, quindi forse mi sto facendo dei problemi che non dovrei farmi e magari sono i miei manuali che sono appositamente più scarni di altri e sicuramente non ho le basi di voi matematici.
Però mi sembra che nella maggior dei casi in cui viene data la definizione di limite una cosa non venga spiegata.
DEFINIZIONE DI LIMITE comune:
con $U_l=(l-\epsi,l+epsi),U_(x_0)^0=(x_0-\delta,x_0+\delta)$ vale $lim_(x->x_0)f(x)=l$ se $forall\epsi>0,existsdelta>0:|x-x_0|<deltaimplies|f(x)-l|<epsi$
ma questa definizione (correggetemi se sbaglio) non ha ...
Salve
Durante lo studio delle derivate mi è capitato di imbattermi un questo tipo di notazione:
$lim_(x->x_0)(f(x)-f(x_0))/(x-x_0) = Df(x_0)$
Mi è chiaro come questo sia una definizione di derivata ma mi è difficile comprenderlo a pieno dato che per notazione "classica di derivata" intendo semplicemente :
$lim_(h->0)(f(x+h)-f(x))/h$
Qualcuno potrebbe spiegarmi le differenze fra le due?
In secondo luogo un'altra notazione che non comprendo a pieno è la seguente
$lim_(x->x_0)(f^(n-1)(x)-f^(n-1)(x_0))/(x-x_0)=f^(n) (x_0)$
Quest'ultima sarebbe una parte dell'ultimo ...

Salve a tutti. Posto un esercizio che sono riuscito a sviluppare solo fino un certo punto e voglio capire se da lí in poi posso solamente applicare de l'Hopital o c'è un qualche altro modo.
$ lim_(x->0) (sin(x^2))^(1/(ln x^2)) $
io sono arrivato fino a ricondurmi a:
$ lim_(x->0) e^((ln(sin(x^2)))/(2 ln x)) $
così da dover calcolare:
$lim_(x -> 0) (ln (sin x^2))/(2 ln x)$

Buonasera a tutti, tra poco ho l’esame di analisi 2 e ho qualche problema su questo tipo di esercizi.
1) Calcolare l’area compresa dalla curva parametrica $ x(t)= t^3 ; y(t)= t^6 + t^3 - 1 $ con $ t:[ 0;2 ] $ e la retta $ y= x+1 $
2) Trovare l’area delimitata dalla curva parametrica $ x(t)= t^2 + 1 ; y(t)=-t^3$ con $t:[0;1] $ e gli assi cartesiani.
In entrambi ho difficoltà perché non posso utilizzare la formula dell’area di gauss green ma sopratutto nel primo non capisco come trovare le intersezioni e ...

Più che di un esercizio in sé vorrei capire una cosa riguardo la logica che sottende la verifica del limite tramite la definizione con epsilon e delta vari.
Per la definizione di limite
$AA epsilon > 0, EE delta_epsilon >0 t.c. \ AA x in X, 0 < |x - x_0| < delta => |f(x) - l| < epsilon$
tutto bene, ora mi aspetto di dover sfruttare questo e di solito infatti si parte dalla condizione di aver scelto un epsilon a caso
Imposto la $|f(x)-l|<\epsilon$
e dimostro con vari passaggio che $|x-x_0|<g(\epsilon)=\delta$ cioè trovo una certa funzione di epsilon che sarà la mia delta ...

salve, chiedo il vostro aiuto per capire un esercizio su un campo conservativo e irrotazionale.
l'esercizio dice che una condizione essenziale perchè un campo irrotazionale sia conservativo è che il dominio sia a connessione lineare semplice, che io ho interpretato con semplicemente connesso, e fin qui (anche se non ho mai toccato con mano la cosa) mi va bene, poi dice che preso un campo:
$ vecu=(yhati-xhatj)/(sqrt(x^2+y^2) $
questo è irrotazionale, e qui mi basta fare il rotore :
$ | ( i , j , k ),( frac{partial}{partial x} , frac{partial}{partial y} , frac{partial}{partial z} ),( y/(sqrt(x^2+y^2)),-x/(sqrt(x^2+y^2)) , 0 ) | = {frac{partial}{partial z}x/(sqrt(x^2+y^2)) \hati =0,-frac{partial}{partial z}y/(sqrt(x^2+y^2)) \hatj =0,-1/(sqrt(x^2+y^2)) \hatk} $
quindi su ...
Ho questo esercizio in cui mi si chiede di determinare se il seguente integrale improprio converge o meno:
$ int_(0)^(oo) ln(1+x)/(xarctan(sqrt(x))) dx $
l'integrale è improprio in entrambi gli estremi di integrazione, quindi:
$ int_(0)^(1) ln(1+x)/(xarctan(sqrt(x))) dx $ + $ int_(1)^(oo) ln(1+x)/(xarctan(sqrt(x))) dx $
per il primo addendo:
$ ~ int_(0)^(1) 1/(sqrt(x)) dx $ (ho usate il criterio del confronto asintotico)
nel secondo addendo invece:
essendo $ pi/4 <= arctan(sqrtx)<=pi /2 $
avrò $ <=4/piln(1+x) $ per il criterio del confronto. Come procedo? Quel ln(1+x) mi blocca.
potrei utilizzare il ...

salve ragazzi,
devo risolvere questa equazione differenziale:
$ yprime+2y+e^(x)=0 $
riscrivo come:
$ yprime+2y+=-e^(x) $
$ p(x)=2 $
$ P(x)=2x $
$ q(x)=-e^(x) $
applico la formula:
$ y(x)=e^(-P(x))(intq(x)e^P(x)dx+c) $
$ y(x)=e^(-2x)(int-e^(x)e^(2x)dx+c) $
ottengo:
$ y(x)=e^(-2x)(-e^(3x)/3+c) $
$e^(-2x)(-e^(3x)/3)+ce^(-2x)$
il risultato del libro deve essere:
$ y(x)=ce^(-2x)-e^(-x)$
grazie

salve ragazzi,
non riesco ad arrivare alla conclusione di questo esercizio:
risolvere l'EDO del primo ordine:
$ yprime=(1-y^2)/(1-t^2) $
procedo nel seguente modo:
$ dy/dt=(1-y^2)/(1-t^2) $
$ dy/(1-y^2)=dt/(1-t^2) $
integro:
$ int1/(1-y^2)dy=int1/(1-t^2)dt $
ottengo:
1/2log(x+1)-log(1-x)=1/2log(t+1)-log(1-t)+c
il risultato che devo ottenere è:
$ y(t)=(t+k)/(kt+1) $
grazie

Ciao a tutti,
Vi scrivo perché ho un dubbio.
Dovrei calcolare il lavoro di una forza $F_a$ costante lungo una curva $gamma(t)$ corrispondente ad un quarto di una circonferenza di raggio $R$.
La forza è sempre diretta in maniera opposta al verso di percorrenza della curva (è una forza di attrito).
$F_a = 7N$
$R= 3m$
$gamma(t)= (cos(t);sin(t)) t in [0,pi/2]$
Io farei semplicemente l'integrale e otterrei integrale (con estremi di integrazione $0$ e ...
2
Studente Anonimo
13 nov 2019, 20:29

Salve a tutti
Ho svolto questo limite di cui non ho risultato
$lim_(x->0^+) (pi/2 +tgx -atg(1/x))^(1/lnx)$
Che a me risulta essere $1$
Procedimento
$exp(1/lnx * ln(pi/2+tgxatg(1/x)) ) = exp(x/lnx * (pi/2+tgx+atg(1/x))/x * ln(pi/2+tgx-atg(1/x))/(pi/2+tgx-atg(1/x)))$
Quindi l'ultima forma indeterminata da risolvere è
$(pi/2+tgx-atg(1/x))/x=(sinx/x)*1/cosx +(pi/2-atg(1/x))/x$
ma se $pi/2 -atg(1/x) = s$ allora $(x=1/tan(pi/2-s))$
Quindi $(s*sin(pi/2-s)/cos(pi/2-s))=s/sin(s)*cos(s)=1$
Quindi in totale mi trovo che l'esponente $->0$ e quindi $e^f(x)->1$
---Fine procedimento---
Il fatto è che, inserendo quel limite su wolfram per confrontare il risultato ...
Lim x->+infinito (x+x^3 sinx)
Stavo pensando di utilizzare la gerarchia degli infiniti.
Cosi facendo dovrebbe darmi +infinito, ma non sono sicuro se si possa svolgere il limite in questo modo.

Ciao a tutti,
non riesco a risolvere il seguente esercizio:
Un numero complesso z verifica $ e^(z/i)=2sinz $.
Mi chiede di trovare $Im(z)$.
Ho provato con le formule di Eulero per il seno, con varie proprietà del logaritmo o di e, ma mi perdo sempre.
Vi ringrazio in anticipo
Ho trovato in biblioteca un libricino impolverato di L. Hörmander (in svedese) risalente agli anni '50. E' una raccolta di problemi che si davano agli studenti del primo anno (credo). Ne propongo uno.
Esercizio. Sia \( f :[0,1] \to \mathbb{R} \) ovunque continua e non-negativa. Dimostrare che \[ \lim_{x \to 0^{+}} x \int_x^1 \frac{f(t)}{t^2} \, dt = f(0). \]
26
Studente Anonimo
12 nov 2019, 23:39

Salve,
ho un dubbio inerente ad un esercizio presente su uno degli esoneri del mio corso degli anni scorsi.
Data la funzione:
$ f(x)=sqrt(e^x-3)/(7-x) $
stabilire per quali valori $ alpha in R $ $ f(x)=alpha $ ammette almeno una soluzione reale.
Ovviamente questo è solo un estratto dell'esercizio originale, tuttavia gli altri quesiti non avevano nulla di particolarmente difficile. Premetto che per affrontare questo esercizio non è ammesso l'utilizzo delle derivate.
Ora, per ...

$ y''=y $
supponendo come soluzione la serie:
$ y=sum_(n=0)^oo a_nx^n $
La soluzione del libro è: $ y=a_0cosh x+a_1sinh x $
Devo ricondurre la soluzione precedente a $ y=c_1e^x+c_2e^-x $
$ y=a_0(e^x+e^-x)/2+a_1(e^x-e^-x)/2 $
$ y=e^x/2(a_0+a_1)+e^-x/2(a_0-a_1) $
se $ (a_0+a_1)=2c_1 $ e se $ (a_0-a_1)=2c_2 $
$ y=c_1e^x+c_2e^-x $
Il procedimento è giusto o sbaglio qualcosa?

Ho questa funzione
$ f(x)=sqrt(x^2+x)+1 $
Dovrei
1) determinare il dominio
2)studiarne i mimiti
3)studiare la derivabilita di f , la sua monitonia ed i suoi eventuali massimi e minimi
4)disegnare grafico qualitativo
5)determinare immagine di f
6) stabilire al variare del parametro k, quante soluzioni (ed eventualmente di che tipo )ha l equazione f(x)=k
Sto procedendo cosi
1) dominio $ x<= -1 x>= 0 $
2)$ lim_(x -> -oo ) f(x)=sqrt(x^2+x)+1 = +oo $
$ lim_(x -> +oo ) f(x)=sqrt(x^2+x)+1 = +oo $
$ lim_(x -> -1 ) f(x)=sqrt(x^2+x)+1 = 1 $
...

Come da titolo, vorrei chiedervi come si trova l'equazione di una retta tangente alla curva di livello in un assegnato punto.
Mi basta un semplice esempio svolto niente più.
La mia idea era di sfruttare il vettore gradiente e trovare un vettore ad esso perpendicolare tramite condizione di perpendicolarità dei vettori ( prodotto scalare nullo intendo).
Tuttavia, se mai dovesse essere giusto il ragionamento, ancora non avrei una retta tangente alla curva di livello, ma semplicemente un vettore ad ...

Buongiorno, non riesco a capire una proposizione incontrata su delle dispense di Analisi 1 di un mio professore di 2 anni fa. In particolare, parlando delle proprietà dei limiti:
$lim_(x->x0)f(x) = l $ con $l $in$ RR$ SE E SOLO SE $|f(x)-l|$ infinitesima per $x->x0$
che relazione c'è tra il limite infinitesimo di un ipotetico 'pezzo' di funzione a partire da $l$ e il fatto che f(x) abbia limite $l$ ??
grazie a tutti