Forum

Domande e risposte su qualsiasi materia per scuole medie, superiori e università da parte della community di studenti.

Domande e risposte

Ordina per

In evidenza
In evidenza
Più recenti
Più popolari
Con risposta
Con miglior risposta
Senza risposta
giovy-votailprof
Vorrei saxe se qlc1 già sa qlk data di gennaio e febbraio, anke se nn ufficiali. Grazie 1000 Ecco le prime DIRITTO INTERNAZIONALE: 15 gennaio 30 gennaio 14 febbraio
24
11 dic 2006, 10:45

smemo89
Ciao a tutti. Ho dei dubbi su alcune cose: Alora quando il seno è uguale a $1/2$ ho 2 soluzioni: $x1=30+k360$ , $x2=180-30=150+k360$ , mentre quando il coseno è $sqrt3/2$ ho $x1=30+k360$ , $x2=360-30=330+k360$ . Poi il seno uguale a $sqrt2/2$ ho: $x1=45+k360$ , $x2=180-45=315+k360$ , poi coseno uguale a $sqrt2/2$ ho: $x1=45+k360$ , $x2=360-45=315+k360$ . Infine: il seno è uguale a $sqrt3/2$ e ho: $x1=60+k360$ e $x2=180-60=120+k360$ , ...
20
17 dic 2006, 13:37

Ghezzabanda
Ciao! L'esercizio dice quanto segue: a) Trovare una funzione continua $f:QQ -> {0,1}$ con $f(0)=0$ e $f(1)=1$ b) Può una funzione di questo tipo essere prolungata per continuità su $RR$? Cioé esiste una funzione continua $f^c: RR->{0,1}$ con $f^c(x)=f(x) AA x in QQ$? Alla domanda a io ho risposto con la seguente funzione: $f(x)=0$ se $x<1/(sqrt(2)), f(x)=1$ se $ x>1/(sqrt(2))$ chiaramente $AA x in QQ$ Il mio problema è dimostrare che una simile ...

enrilo
Ciao a tutti sono un utente nuovo di questo forum... Ho un problema con un limite che tende ad infinito di questo genere: $lim_(vec x +oo) (x^^4//(x+1))^^1//3 -x$ Non capisco perché la soluzione sia -1/3 e non 0. Ho controllato la soluzione con più programmi e tutti mi danno -1/3 Spero di aver scritto giusto il codice della formula... grazie a tutti
4
17 dic 2006, 11:59

Luca D.1
Buongiorno! Non mi è molto chiaro in cosa consista la soluzione del seguente testo: nella formula di riduzione: $int_Af(x, y, z)dxdydz = int_(Pi_x(A))(int_(A_x)f(x, y, z)dydz)dx$ determinare gli insiemi $Pi_x(A)$ ed $A_x$ se: $A = {(x, y, z) in R^3: x^2 + y^2 <= (z-1)^2, 0 <= z <= 1}<br /> Ora, disegnando A saltano fuori due coni, uno rivolto verso l'alto e uno verso il basso, con vertice di base in comune in $(0, 0, 1)$<br /> Nell'integrale interno a destra dell'uguale, cioè:<br /> $int_(A_x)f(x, y, z)dydz$<br /> considerando x costante rappresenta l'area di una fetta di questi due coni nel piano $yz$.<br /> Quindi, molto banalmente, posso dire che:<br /> $A_x = {(x, y, z) in R^3: x^2 + y^2
13
15 dic 2006, 10:46

Kroldar
Leggendo un post di Luca.Lussardi mi è tornato alla mente un dubbio che mi venne illo tempore e che mai ho fugato... Il mio testo di Metodi Matematici recitava (e recita per fortuna tuttora ) così: Sia $f: (a,b) sube RR to RR$ una funzione derivabile; essa è lipschitziana se e solo se la derivata $f'$ è limitata. Purtroppo il programma prevedeva soltanto un accenno a questa parte e non prevedeva la dimostrazione del suddetto enunciato. Qualcuno sa gentilmente fornirmi una ...
3
17 dic 2006, 02:59

Sam86M
come posso DIMOSTRARE CHE PER a,b E P ( (x^a) - 1 , (x^b) -1 ) = ( x^ (a,b) ) - 1 cioè il massimo comun divisore tra x elevato alla a, meno uno e x elevato alla b, meno 1 è uguale a x elevato al massimo comun divisore tra a e b, meno uno. grazie!!

rico
Ciao! sto facendo questo es: Calcolare $(1-i)^18/((1+i*(sqrt2-1))^3)$ allora con $z=1-i$ ho: $|z|=sqrt2$ e $theta=-pi/4$ma quindi la potenza in forma trigonometrica e cosi: $(sqrt2)^(18)(cos(-(18)/4pi)+isin(-(18)/4pi))$??e in forma polare $(sqrt2)^(18)e^(i(18)/4pi)$ e i problemi vengono qua $z'=1+i(sqrt2-1)$ $|z'|=sqrt2$ e l argomento $theta$ com lo trovo? Grazie mille anticipate!!
8
16 dic 2006, 16:41

Ghezzabanda
Ciao ragazzi, dovrei dimostrare che una funzione continua in $x_0$ è, in un determinato Intorno di $x_0$, limitata! come posso fare? Mi è venuta un'idea! Ditemi se sbaglio qualcosa: $f$ continua in $x_o rArr AA eta > 0 EE Delta AAx in RR |`$x-x_0$`|<Delta rArr |`$f(x)-f(x_0)$`|<eta$ Chiaramente $f(x)-f(x_0) <=|`$f(x)-f(x_0)$`| rArr f(x)-f(x_0) <= eta rArr f(x)<= eta +f(x_0) := M rArr f(x)<= M AA x$ Quindi ho dimostrato che per un $Delta$-intorno di $x_0$ la funzione è limitata! Sbaglio qualcosa o ...

Imad2
$lim_(x->1) (x)^(3/(x-1))$ ki mi puo dire il procedimento
9
16 dic 2006, 19:15

asterix22
Ragà ho questo problema che mi sta assillando. Potete aiutarmi? Dato un triangolo isoscele di base AB = 6a e lato BC = 5a, sia P un punto di AC e Q la sua proiezione ortogonale su BC. Determinate PQ = x in modo che sussista la relazione: 24AP^2/25 + PQ^2/24 = ka^2 Otterrete l'equazione 13x^2 - 120ax + 12a^2(24 - k) = 0
5
16 dic 2006, 16:06

friggi195
Vi sottopongo un problema che mi ha occupato mezza giornata.... Vi prego aiutatemi a risolverlo Un'auto viaggia a velocità costante V= 20m/s. All'istante $t_(0)$=0s l'auto vede a 24m di distanza un pedone fermo in mezzo alla strada e quindi inizia a frenare con accelerazione di $-6m/s^2$. Sapendo che l'auto si ferma all'istante t=3,3s e a x=33,33 m calcola che velocità minima deve avere il pedone per evitare l'impatto. Per piacere se siete così gentili da mostrare i ...

topi1
Sottopongo un problema che non ha trovato risposte nel forum Generale. Da neo-iscritto sono incerto sul giusto forum. Supponiamo che ci siano 14 ponti su uno stesso fiume; ogni ponte ha due piloni, così che ogni particella di acqua può passare fra i due piloni oppure sulla riva sinistra o sulla riva destra. Supponiamo che data la turbolenza e la distanza fra i ponti ci sia un perfetto rimescolamento dell' acqua. Per ogni singolo ponte si puo' dire che il numero di particelle (molecole) di ...
1
7 dic 2006, 00:42


Pablo5
Salve ragazzi a gennaio dovrei dare l'esame di fisica è previsto l'orale nel quale posso esporre un argomento a piacere tale argomento non deve essere eccessivamente lungo, dato che ho anche altri esami, il fatto è che non ho la minima idea di cosa esporre. Dovrei cercare un argomento interessante, che possibilmente si colleghi a cio' che ho studiato durante il corso. Vi elenco i principali argomenti da me trattati cinematica del punto materiale dinamica classica newtoniana del punto ...

fu^2
cosa significa il punto escamativo di fianco? lo trovo scritto sempre più spesso, ma non so cosa significa... chi mi aiuta a capire:-D ?
7
15 dic 2006, 19:38

bertuz1
Ciao! Ho un piccolo dubbio sulla risoluzione di un limite tramite il suo sviluppo in serie di MacLaurin (o taylor in 0) $lim_(x->0) (1-cos(x))/(1+x-e^x)$ ovviamente lo svolgimento è questo: $lim_(x->0) (x^2/(2!) -x^4/(4!) +x^6/(6!) +...) / (-x^2/(2!) -x^3/(3!) -x^4/(4!)-..)$ eliminando già 1 al numeratore e 1+x al denominatore grazie allo sviluppo in serie, ma poi non saprei come dividere i membri al numeratore con quelli del denominatore. Dubbio scemo ma essenziale.. qualcuno sa aiutarmi? Grazie
4
16 dic 2006, 17:14

amarolucano
Vi scrivero alcuni problemi che nn mi sono chiari il primo è questo: Una sorgente di f.e.m. costante E è chiusa su di un circuito formato da due resistenze R1 e R2 in serie. Ai capi di R1 si deriva un circuito di resistenza R3 (puramente Ohmica), si chiede: a)qual'è l'intensità della corrente sul circuito derivato e la potenza in esso dissipata b)se in particolare E=100V, R1= 10, R2=1000 e il circuito derivato è costituito da un filo di costantana (resistenza specifica 5*10^-5) della sezione ...

baka1
Ciao ho un dubbio abbastanza stupido che però non mi è chiaro sia $V := RR^3$ sia $V_1= {(a, a, a) in V| a in RR}$ incluso in V, devo stabilire se è un suo sottospazio quindi come prima cosa quardo se il vettore nullo appartiene a $V_1$ e basta porre $a = 0$ devo poi verificare se la somma e il prodotto generano un vettore appartenete ancora a $V_1$ ma dato che il vettore nullo deve esistere altrimenti $V_1$ non è sottospazio di ...
4
16 dic 2006, 16:25

*missdreamer*12
Grazie... σ(L) = {⋅, 1} e ∑ = {∀xyz (xy)z = x(yz), ∀x 1x=x, ∀x x1=x, ∀x∃y xy=1} dimostrare che: 1. ∑ ⊢ ∀xy (xy=1 → yx=1) 2. ∑ ⊢ ∀x∃y (yx=1)