Forum
Domande e risposte su qualsiasi materia per scuole medie, superiori e università da parte della community di studenti.
Domande e risposte
Ordina per
In evidenza
Non ho capito alcune cose di una dimostrazione della seguente proposizione
Sia \( U \) un aperto semplicemente connesso che non contiene zero, con \( a \in U \). Allora \( L: U \to \mathbb{C} \)
\[ L(z) = \omega + \int_{a}^{z} \frac{1}{\xi} d\xi \]
definisce una determinazione del logaritmo nel senso che \( \exp(L(z))=z \), per tutti i \( z \in U \), se \( e^{\omega} =a \).
Dimostrazione:
Siccome \( U \) è semplicemente connesso la funzione \( L \) è ben definita.
Abbiamo inoltre che \( ...
Salve, qualcuno può aiutarmi a capire questa dimostrazione che ho trovato?
Dimostra che il numero di partizioni di un numero intero positivo \(n \) scrivibili con numeri distinti è uguale al numero di partizioni di \( n \) con numeri dispari.
Sia \( \mathcal{D}(n) \) il numero di partizioni di \(n \) con numeri distinti e \( \mathcal{O}(n) \) il numero di partizioni con numeri dispari allora abbiamo che
\[ \sum\limits_{n \geq0} \mathcal{D}(n)q^n = \prod\limits_{n=1}^{\infty} (1+q^n) = ...
Ciao a tutti,
ho trovato in rete il seguente problema, che richiede (non so come) l'utilizzo del teorema di convergenza per martingale di Doob.
Sia $(F_n)_n$ una filtrazione di $(\Omega, \mathcal{F},\mathcal{P})$. Prova che per $A \in F_{\infty}= \sigma(\cup_n F_n )$ esiste una sequenza $A_n \in F_n$ tale che $\lim_{n \rarr + \infty} P(A_n \Delta A)=0$, dove $A_n \Delta A=(A_n \setminus A) \cup (A \setminus A_n)$.
Il suggerimento dice: definisci $M_n=P(A|F_n)$
Non saprei proprio come procedere, e nemmeno come sfruttare il suggerimento del testo. ...
Salve, mi blocco nel punto (3) di questo esercizio
Sia \( f \) analitica in \( D(0,1+\epsilon) \) per qualche \( \epsilon \).
(1) Dimostra che
\[ f(z) = \frac{1}{2\pi } \int_{0}^{2\pi} \frac{e^{it}}{e^{it}- z} f(e^{it}) dt;\]
(2) Dimostra che per tutti \( z \in D(0,1) \)
\[ f(0) = \frac{1}{2\pi } \int_{0}^{2\pi} \frac{1+e^{it}\overline{z}}{1-e^{it}\overline{z}} f(e^{it}) dt;\]
(3) Dedurre la formula integrale di Schwarz, con \( z \in D(0,1) \).
\[ f(z) = i \Im (f(0)) +\frac{1}{2\pi } ...
Buongiorno a tutti!
Sono alle prese con un esercizio e vi chiedo per favore di darmi una mano.
L'esercizio è questo:
Sia $N:RR^3 -> RR$ definita da:
$ N (x, y, z) := max \{ |x| + |y|, |z|\} $ .
Dimostrare che $N$ è una norma su $RR^3$ e stabilire se l’insieme $\{(x, y, z) in RR^3:\ N(x, y, z) <= 3 \}$ è compatto rispetto alla metrica indotta da $N$.
Ora, per quanto riguarda la dimostrazione di norma credo che la seguente possa andare:
[*:2nwcm8c5] $N (X)=N(x,y,z) >=0$ per ...
Buongiorno a tutti.
Mi sono incagliato in una dimostrazione che seppur potenzialmente semplice non riesco proprio a sciogliere.
Vorrei dimostrare che $(S')' \subseteq S'$ dove $S$ è un generico sottoinsieme di uno spazio topologico $(X,\mathcal{T})$.
Con $S'$ intendo ovviamente il derivato di $S$.
Io ragiono cosi:
Fisso $x \in (S')' \Rightarrow \forall U(x) \qquad U(x) \setminus \{x\} \cap S' \ne \emptyset$ dove $U(x)$ è un generico intorno di $x$.
Dunque mi verrebbe a questo punto da prendere ...
Salve a tutti.
Volevo scrivere un programma in C che verificasse che n sia primo o meno e per questo ho deciso di utilizzare il piccolo teorema di Fermat ovvero:
\(\displaystyle p \) è primo se:
\(\displaystyle a^p \equiv a \left(\mathrm{mod} \ p \right)\), \(\displaystyle \forall a \in \mathbb{Z} \).
Il problema è che per valori grandi (all'incirca da n=40 in su) il programma non da il risultato corretto. Dove sta il problema? Il codice è il seguente:
Un approssimazione di $pi$ di “grado $n$” può essere calcolata tramite la somma
$ pi_i=sum_(j=0)^i (-1)^j*4/(2j+1) $
1. Sviluppare un programma che prenda un numero intero, $n$, e calcoli l’approssimazione di “grado $n$”.
2. Sviluppare una seconda versione che prenda un double, $epsilon$, e calcoli un approssimazione di $pi$ di “grado
$n$” tale che $|pi_i - pi_(i-1)|<epsilon$
il primo punto è cosi è funziona:
Buonasera a tutti e grazie in anticipo per il vostro aiuto.
Sto svolgendo una prova d'esame di TLC nella quale è presente il seguente problema di probabilità:
Date due v.a gaussiane aventi:
$mu_1=3$ e $sigma_1 ^2 =5$
$mu_2=5$ e $sigma_2 ^2 =4$
$rho=0,4$
calcolare (tra le varie cose) media e varianza della v.a $Z=X1 - 2X2$
Per quanto riguarda la media ho ottenuto $-7$ (se mi confermate o correggete ve ne sono grato) mentre per quanto riguarda ...
Durante a una riduzione a scala di una matrice (associata al sistema)che presenta un parametro k non ho capito quando è necessario studiare se k=0 oppure si può continuare senza.
Grazie
Problema angoli e archi circonferenza
Esercizio n. 4
Grazie mille per l'aiuto
Buonasera,
mi è stato assegnato il seguente esercizio:
Utilizzando le proprietà del birapporto dimostrare il teorema fondamentale della geometria proiettiva in dimensione 1.
In particolare devo considerare le due seguenti proprietà del birapporto:
1. Il birapporto è invariante proiettivo.
2. Dati tre punti $A,B,C$, $\forall t \exists ! D: R(A,B,C,D)=t$.
Devo dimostrare che esiste ed è unica la proiettività $T$ tale che $T(A,B,C)=(A',B',C')$.
Quindi prima di tutto ...
Buonasera, sto cercando di risolvere questo circuito, ma ho difficoltà nell'impostazione:
I dati sono: $E_1=6V, A_2=120A, R_2=R_5=10ohm, R3=5ohm, R4=15ohm, R6=20ohm$.
Ho iniziato a risolverlo con il metodo delle correnti di maglia:
$\{(V_6-V_5-V_4=0),(V_4+V_2-V_3=0),(V_5+V_1-V_2=0):}$
Dal quale:
$\{(R_6(-J_1)-R_5(J_1-J_3)-R_4(J_2-J_1)=0),(R_4(J_2-J_1)+V_2-R_3J_2=0),(R_5(J_1-J_3)+E_1-V_2=0):}$
Lascio l'incognita $V_2$ perché non so come gestire la tensione su un generatore (ideale o reale?) di corrente con in serie una resistenza.
Poiché il sistema ottenuto presenta 4 incognite in 3 equazioni, il mio prof mi ha ...
Due oggetti di forma sferica A e B, identici tra loro, possiedono una carica iniziale prima del contatto. Vengono prima poste a contatto e poi separate, quale sarà la carica sulla sfera A nei seguenti casi:
1) A= +50 e B= 0
2) A= +100 e B= +50
3) A= -100 e B= -50
4) A= -50 e B= +50
Quello che ho capito dell'argomento è che sono gli elettroni a muoversi e che cariche uguali si respingono.
Nel caso 1) dopo essere state separate dovremmo avere q/2 su entrambe, quindi A= +25 e B= +25. Corretto?
E ...
Per \( n \in \mathbb{Z}_{\geq 1} \) abbiamo che
\[ \sum\limits_{d \mid n } \phi(d)=n \]
dove \( \phi \) è la funzione totiente di Eulero. Trova una dimostrazione usando argomentazioni di combinatoria di questa formula
Vi domando se vi sembra abbastanza combinatoria come dimostrazione e se va bene.
Io ho pensato a questo definiamo \( \Phi_d := \{ \ell \in [d] : \operatorname{gcd}(\ell,d)=1 \} \) abbiamo \( \left| \Phi_d \right| = \phi(d) \) e quindi dimostrare che \[ \bigsqcup\limits_{d ...
Archi e angoli circonferenza
Miglior risposta
Potreste gentilmente aiutarmi negli esercizi 2 e 4 allegati?
Grazie mille
Un uomo e una donna si danno appuntamento davanti a un cinema alle 12:30. Se l'uomo arriva in un istante uniformemente distribuito sull'intervallo tra le 12:15 e le 12:45 e la donna, in maniera indipendente dall'uomo, arriva in un istante uniformemente distribuito sull'intervallo tra le 12:00 e le 13:00, si determini:$a)$ la probabilità che il primo che arriva attenda l'altro non più di 5 minuti;
$b)$ la probabilità che l'uomo arrivi per primo.
So che:
- ...
In $H=L^2[-\pi,\pi]$ è definito $Tf(x)=g(x)$ dove $g(x)=cos(x)f(-x)+sin(x)f(x)$ . Mostrare che T è limitato e trovarne la norma.
Quindi se ho capito, calcolo la norma e vedo se è limitato oppure no. CIoè calcolo
$||Tf||^2=\int_(-\pi)^(+\pi)(cos^2x|f(-x)|^2+sin^2x|f(x)|^2+sinx cosx (f(x)f^** (-x)+f(-x)f^**(x))) text(d) x$
(il + in apice sarebbe l'asterisco di complesso coniugato, non riuscivo a metterlo) . E...qua mi fermo Sono almeno partito bene? Qualche aiuto?