Forum
Domande e risposte su qualsiasi materia per scuole medie, superiori e università da parte della community di studenti.
Domande e risposte
Ordina per
In evidenza
Calcolare $\frac{d}{dx}( x^{x^{x^{x^{. ^{. ^{.}}}}}})$
Salve, per il calcolo della velocità media si calcola la variazione di spazio in un intervallo di tempo, avendo vari valori di velocità per calcolare la media delle velocità mi devo calcolare la somma dello spazio ed in basso quella del tempo?
Nel caso di media delle velocità sarebbe la somma delle velocità fratto il numero di velocità inserite? Grazie, spero di essere stata chiara, non ho voluto postare un problema per non disturbare ulteriormente, volevo solo sapere se ho fissato il concetto ...
Salve, allora mi è capitato questo quesito sul libro:
la radice cubica di un numero reale x, con La radice cubica di un numero reale x, con 0 < x < 1, risulta:
A)Un numero reale negativo
B)Un numero maggiore di x
C)Un numero minore di x
D)Non essere un numero reale
E) Un numero sempre maggiore di 1
Escludo: A, D, E.
Mi rimane il dubbio tra la B e la C, perché chiedendo un numero maggiore di 0 e minore di 1, intende un numero positivo giusto? Del tipo $8/27$?
Risolvendo tipo la ...
Nell'ambito del trasformatore ideale, la dimostrazione della relazione \(\displaystyle M^2 = L_{1}L_{2} \) (dove \(\displaystyle M \) è il coefficiente di mutua induzione e $L_{1}$ ed $L_{2}$ quelli di autoinduzione) avviene considerando il calcolo dell'energia infinitesima assorbita dal doppio bipolo, che vale
\(\displaystyle dU = L_{1}i_{1}di_{1} + L_{2}i_{2}di_{2} + M(i_{1}di_{2} + i_{2}di_{1}). \)
che integrando ambo i membri, dai miei appunti risulta essere uguale ...
Su una dispensa ho letto che quando si ha una disequazione f(x)*g(x)>=0 ed f(x)>=0 è sempre soddisfatta basta tirare una "riga continua con tutti + nel castelletto e stop" (perdonate la mancanza di eleganza ma non ho voglia di scrivere un poema) ma questo è sbagliatissimo a mio avviso. Infatti se avessi questo problema e non valutassi cosa accade in prossimità dello 0:
$ t^2(t-2)>=0 $
scriverei:
$ t>=2 $
invece di questo:
$ t=0, t>=2 $
Mi è stato detto che sono pignolo ma ho ...
Riporto un esercizio che ho svolto ma senza riuscire ad ottenere il giusto risultato: L'immagine della funzione $f(x,y)=x-2y$ sulla curva di livello uno di $g(x,y)=x^2+4y^2$ è... tra i vari risultati quello giusto è $[-sqrt(2),sqrt(2)]$ . Ho trovato $Imf$ come $k=x-2y$ e la curva di livello uno $x^2+4y^2=1$ e li ho posti a sistema, ponendo alla fine $k=1$ ma non mi esce il risultato giusto. Un aiuto ?
Salve a tutti!
Sto sbagliando il calcolo di questo integrale, mi aiutate a capire cosa c'è che non va?
$\int_0^{2 pi}\sqrt{1-cost} \ dt$
Prima trovo la primitiva e poi calcolo l'integrale definito
$\int \sqrt{1-\cos t} \ dt= - 2 \sqrt{1+\cos t} + c$ effettuando la sostituzione $cost=u$.
Dunque $\int_0^{2 pi}\sqrt{1-cost} \ dt = -2 [ \sqrt{1+\cos t}] _0^{2 pi} = 0$
In figura `e rappresentato il meccanismo di una bicicletta ellittica. Nella configurazione assegnata, sono note la velocit`a angolare costante del disco 1, oraria e la forza F agente sul pedale.Nell’ipotesi di trascurare la massa di tutti i componenti si chiede di determinare: 1. La velocit`a angolare dell’asta 3 2. La velocit`a del punto in cui `e appoggiato il piede (H) 3. La coppia da applicare al corpo 1 per equilibrare dinamicamente il sistema 4. La reazione vincolare in D 5. L’accelerazione ...
Determino il potenziale del seguente campo:
$w = y^2 dx + 2xy dy - 1/z^(2)dz$
Ne scelgo una a caso per partire:
$int 2xy dy = 2x int y dy = xy^2+c(x,z)$
Derivo o rispetto a $z$ o rispetto a $x$ ed eguaglio rispettivamente a $F_3$ o $F_1$, in questo caso ho scelto $z$:
$d/dz[xy^2+c(x,z)] =-1/z^2$
quindi: $c_z(x,z)=-1/z^2$
integro per ricavarmi $c(x,z)$
$int -1/z^2 dz = 1/z +c(x)$
Derivo rispetto a $x$ ed eguaglio a ...
Giusto per fissare le idee, la disuguaglianza di Young ci dice che $AA x,y > 0$ e $AA p,q > 1 : 1/p + 1/q = 1$, risulta
$xy <= x^p/p +y^q/q$
A lezione il professore ci ha detto che è possibile dimostrare tale disuguaglianza calcolando il minimo della funzione $x^p/p +y^q/q$ sottoposta ai vincoli $xy = 1$ e $x,y>0$. Non capisco tuttavia perché. Come mai si dovrebbe porre $xy =1$? Mi sembra che questa condizione sia restrittiva.
Ho cercato di dare ...
Salve a tutti, ho un problema su un esercizio all'apparenza semplice, ma che mi sta dando molti problemi. Vi riporto il testo:
''Un carrello si muove con accelerazione costante A. Sull’ estremità destra del carrello è posta una molla, compressa di un tratto δ (di costante elastica k e lunghezza a riposo l0), all’ estremità libera della quale è appoggiato un blocchetto (praticamente puntiforme) di massa m. Tra il blocchetto e la superficie superiore del carrello c’è attrito, con coefficiente di ...
Salve a tutti, ho un problema su un esercizio all'apparenza semplice, ma che mi sta dando molti problemi. Tra poco ho un'esame e vorrei togliermi dei dubbi. Vi riporto il testo:
''Un carrello si muove con accelerazione costante A. Sull’ estremità destra del carrello è posta una molla, compressa di un tratto δ (di costante elastica k e lunghezza a riposo l0), all’ estremità libera della quale è appoggiato un blocchetto (praticamente puntiforme) di massa m. Tra il blocchetto e ...
Buongiorno a tutti, torno nuovamente a chiedere il vostro aiuto.
Sono bloccato e non so piu' su cosa concentrarmi sullo studio. Ora sto affrontando il nuovo tema COSTI RIDOTTI.
Avendo delle slide scritte in modo piuttosto difficile e macchinose vorrei illustrarvi subito un esempio cosi' da capire su quali temi soffermarmi di piu' con lo studio.
SI CONSIDERI UN PROBLEMA DI PL IN 3 VARIABILI CON COSTI RIDOTTI ( 0,0,0 )
dare una delle seguenti risposte :
A non possiamo concludere nulla in ...
ho una domanda cosa succede se uno studente non paga mai la prima rata universitaria? e poi cosa si intende per prima rata quella effettiva o quella del test d'ingresso?
Se $U(x, y, z) $è un potenziale del campo vettoriale $F(x, y, z) =(z^3+6xy^2, 6x^2y+1, 3xz^2)$ con $U(0, 0,0)=0$, allora $U(1,1,1)$ vale
1) - 3
2) 1
3) 5
4) 3
$U=int(z^3+6xy^2)dx =xz^3+3y^2x^2 +H(y) $
$d/dy(3y^2x^2) =6x^2y$
$6x^2y+H'(y)=6x^2y+1$
$H(y)=int(1)dy=y + M(z)$
$M'(z) =3xz^2$
$M(z) = int(3xz^2)dz = xz^3 +C$
$U=xz^3+3y^2x^2+y+xz^3$
$U(1,1,1)=1+3+1+1=6$
Il risultato non rientra nelle possibili risposte, qualcuno sa dirmi cosa ho sbagliato?
Buongiorno a tutti,
Qualcuno potrebbe spiegarmi la risoluzione di questo limite:
$lim_(h->0)(ln(x)^x) $
Grazie mille e buona giornata
$ 1/z + 1/w = 1/(z+w) $
Descrivere tutte le soluzioni $ (z, w) $ con $ z,w in CC $.
L'esercizio fa parte di un'introduzione alla geometria complessa dove si è appena mostrato come un numero complesso $ a + ib $ si può rappresentare con la matrice di rotazione $ ( ( a , -b),( b , a ) ) $, quindi va risolto con un ragionamento geometrico o di algebra lineare su questo tipo di matrici.
Siano $ n, m in NN $ e $ x in RR $, definiamo la funzione:
$ h(x)= lim_(m->infty)lim_(n->infty)(cos(m!pix))^n $
Dimostrare che $ AA a in RR $ non esiste il limite $ lim_(x->a)h(x) $ .
Non conosco la soluzione dell'esercizio, di seguito un po' di contesto:
L'esercizio è preso da queste dispense di Analisi di John E. Hutchinson (pag 109 esempio 6):
https://maths-people.anu.edu.au/~john/A ... 21H_97.pdf
Per adesso ho difficoltà anche a capire se la funzione $ h $ sia ben definita.
Nello studio della meccanica razionale mi sono imbattuto nel dover disegnare, in maniera qualitativa, alcune curve di livello dell'energia efficace, definita come:
$\epsilon eff(\rho, dot \rho) = 1/2mdot \rho^2 + V eff(\rho)$
A prescindere dal concetto di energia efficace, non essendomi mai imbattuto in funzioni di questo genere vorrei sapere, un po' in linea generale, come affrontare queste funzioni (con, come variabili, una grandezza e la sua derivata).
Vorrei dunque capire da cosa partire e cosa dovrei analizzare di questa funzione ...