Esercizio curva di livello

davide.fede1
Riporto un esercizio che ho svolto ma senza riuscire ad ottenere il giusto risultato: L'immagine della funzione $f(x,y)=x-2y$ sulla curva di livello uno di $g(x,y)=x^2+4y^2$ è... tra i vari risultati quello giusto è $[-sqrt(2),sqrt(2)]$ . Ho trovato $Imf$ come $k=x-2y$ e la curva di livello uno $x^2+4y^2=1$ e li ho posti a sistema, ponendo alla fine $k=1$ ma non mi esce il risultato giusto. Un aiuto ?

Risposte
Studente Anonimo
Studente Anonimo
Dovresti determinare le due rette del fascio improprio:

$x-2y=k$

tangenti all'ellisse di equazione:

$x^2+4y^2=1$

In definitiva:

$\{(x-2y=k),(x^2+4y^2=1):} rarr \{(x=2y+k),(8y^2+4ky+k^2-1=0):} rarr [k^2-2=0] rarr [k=+-sqrt2]$

davide.fede1
Tutto chiaro, tranne il come si passi dalle due equazioni al $k^2-2=0$

@melia
Condizione di tangenza: $Delta=0$ nell'equazione di secondo grado risolvente il sistema

davide.fede1
Grazie mille !

Rispondi
Per rispondere a questa discussione devi prima effettuare il login.