Forum

Domande e risposte su qualsiasi materia per scuole medie, superiori e università da parte della community di studenti.

Domande e risposte

Ordina per

In evidenza
In evidenza
Più recenti
Più popolari
Con risposta
Con miglior risposta
Senza risposta
Fabrizio84901
Salve, devo trovare il momento d'inerzia di un'asta inclinata di 45° rispetto l'asse orizzontale, la sua proiezione sull'asse delle x (e delle y) è lunga L, mentre il suo spesso è S, l'ho svolto con l'integrale, credo sia giusto, tuttavia vorrei farlo sommando le proiezioni sull'asse delle x e delle y, infatti usando questo metodo so che la lunghezza da considerare è L (ovvero la proiezione dell'asta sugli assi), ma non so come mi devo comportare per lo spessore.Grazie mille in anticipo!
1
26 giu 2013, 11:40

Tech99
Non mi ricordo come si svolgono questo tipo di problemi :-/ 1- Calcola il perimetro di un rettangolo sapendo che l'area è di 1536 cm2 e che la base è i 3/8 dell'altezza. RISULTATO : 176 cm 2-n rettangolo ha l'area di 1792 cm2 e la base è i 7/4 dell'altezza. Calcola l'area di un quadrato avente lo steso perimetro del rettangolo. RISULTATO : 1936 cm2 3- In un rettangolo, avente l'area di 147 cm2, la base è il triplo dell'altezza. Calcola l'area di un quadrato il cui perimetro è i 6/7 ...
11
25 giu 2013, 16:18

miry93-thebest
Salve. per determinare la convergenza di integrali impropri, la mia prof ci ha dato una serie di criteri. Ne prendo uno: se l'integrale va da "a" a +inf, se esiste un alfa>1 affinchè lim x-> +inf (f(x)*x^alfa) esista finito allora l integrale converge. ora, se trovo l'alfa>1 ok, ma se alfa=1 o alfa

XxKilluaxX
Salve a tutti. Pur avendo visto e rivisto la teoria non riesco a svolgere questi due esercizi. Speravo che qualcuno potesse darmi dei chiarimenti anche senza alcun calcolo. Ex.1 Data la super ficie S rappresentata parametricamente da x = uv; y = 1 + 3u; z = v3 + 2u determinare il versore normale in ogni punto. Ex.2 3. Data S : (x; y; z) = (3u; u2 + v; 2v) studiarne le curve coordinate nel punto P(6; 4; 0). Riguardo al primo esercizio avevo ...

Kashaman
Salve ragazzi, ho un dubbio circa tale teorema : Th: Sia $f : I -> RR$ , $I$ un intervallo. Se $f $ convessa in $I$ $=>$ f è continua nell'interno di $I$ , che denoto con $J(I)$ dim : Sia $x_0 \in J(I)$ , voglio provare che $lim_{x->x_0} f(x) = f(x_0)$ (1) A tal fine premettiamo il seguente Lemma Sia $f : I -> RR$ convessa. E $x_0 \in I$ allora $F : A \\{x_0} -> RR$ tale che $F(X)= ( f(x)-f(x_0))/(x-x_0)$ è crescente. Il ...
11
25 giu 2013, 18:58

Plepp
Buongiorno ragazzi, stavo tentando di dimostrare che $f(x):=|x|^\gamma$ è $\gamma$-holderiana se $\gamma\in(0,1)$. La mia Prof ci ha fornito una dimostrazione molto semplice e carina, ma prima di leggerla ho provato a ragionar da solo, e ne è uscito questo: ho pesato di dimostrare che \[\varphi(t):=\dfrac{|1-|t|^\gamma|}{|1-t|^\gamma}\] è limitata, e l'ho provato calcolando due limiti, quello per $|t|\to + \infty$ e quello per $t\to 1$; i limiti sono entrambi finiti, ed ...
3
26 giu 2013, 10:30

mircosam
$ (-2(1+i)(1+sqrt(3)i))/((sqrt(3)+i)^3)$ e devo calcolare le radice quarte Io ho fatto i calcoli al numeratore ed ho ottenuto $ (-5.46i+1.46)/((sqrt(3)+i)^3)$ poi ho pensato di calcolare la forma trigonometrica di numeratore e denominatore. Infine ottengo $ root(3)(5.65 cos (pi/6+2k pi)/3 - i sen (pi/6+2k pi)/3))$ Potete dirmi se è esatto?? grazie
9
25 giu 2013, 17:00

spinoni
appunti di diritto privato
1
25 giu 2013, 15:20

retrocomputer
Ciao, oggi ho provato a cimentarmi nel seguente esercizio, ma senza successo... Si tratta di una proprietà simile ma più forte dell'assenza di memoria della legge esponenziale e pare che ne esista una versione ancora più forte che non richiede che $Y$ abbia densità. Esercizio. Sia $X$ una variabile aleatoria di legge esponenziale di parametro $\lambda$ e sia $Y$ una variabile aleatoria indipendente da $X$, con legge definita dalla ...

Reginella94
mi servirebbe il riassunto sui teoremi sulle funzioni derivabili..Grazie!!! ah molto semplice
4
26 giu 2013, 16:50

smaug1
Ipotiziamo di avere un recipiente con pareti adiabatiche, chiuso da un pistone mobile di massa trascurabile adiabatico, che contiene n moli di gas ideale monoatomico inizialmente in equilibrio a pressione atmosferica e a una certa temperatura. Attraverso la base diatermica, viene posto in contatto con una sorgente di acqua e ghiaccio,a pressione atmosferica. Raggiunto nuovamente l’equilibrio, si è sciolta una massa di ghiaccio m1. La trasformazione come faccio a capire che è isobara? essendo ...

iMax21
Ho un dubbio piuttosto semplice spero da risolvere sugli sviluppi di McLaurin, in particolar modo sulo sviluppo al secondo ordine di: $ sin x $ dallo sviluppo di McLaurin che ho sul mio formulario dovrei applicare: $ sin x = x-(x^3)/(3!)+(x^5)/(5!)+...+(-1)^n((x^(2n+1))/((2n+1)!))+o(x^(2n+2)) $ il problema e' quel dannato o piccolo! dato che mi serve l'approssimazione al secondo ordine mi fermo al primo termine ottenendo: $ sin x = x +o(...) $ ma quell'o piccolo non capisco cosa dovrebbe contenere secondo la soluzione: $ sin x = x+o(x) $ ma ...
8
26 giu 2013, 12:10

GYX2
Salve a tutti Il seguente esercizio mi risulta "strano" da completare nella prima parte, potreste mica darmi delucidazioni in merito? Stabilire se il dominio di $D={(x,y,z):z^2<=x^2+y^2, z>=x^2+y^2}$ è normale. Determinarne poi le sue limitazioni in coordinate cilindriche. Andando "ad occhio" direi che il dominio è normale a $z$, ma né ne sono certo, né ne ho la prova, quindi mi metto nelle vostre mani per una dimostrazione tangibile di questa cosa. Per le limitazioni in coordinate cilindriche, ho ...
4
26 giu 2013, 19:55

miry93-thebest
La beta e la Gamma di Eulero sono integrali generalizzati. Ma in quali casi convergono???

quahog
Da Gazzetta.it: "Il fantasista rossonero non è rientrato con la squadra dopo il trionfo sulla Juve per festeggiare invece a Torino con i connazionali: prima in un ristorante brasiliano, poi in un locale dove si esibiva un gruppo musicale di Rio. Che lo ha chiamato su palco invitandolo a mettersi alle percussioni, strumenti per i quali nutre una vecchia passione Secondo voi Dinho è bravo a suonare le percussioni o si sarà limitato a picchiarci sopra le mani a ...
3
12 gen 2010, 11:34

Sama1
"Un Battitore di una squadra di baseball scaglia la palla di m=0,15Kg alla velocità vi=40 m/s con un'inclinazione di 30°. Quanto vale l'energia cinetica della palla quando raggiunge il punto più alto della traiettoria?" Sono partito dal presupposto di trovarmi vix e viy; Ricordando che nell'altezza massima Vmaxy=0 non so più come procedere..o perlomeno devo davvero considerare solo l'energia cinetica e calcolarla come $ 1/2m*vcos\alpha $ ? Perchè così il risultato è giusto..

sus.anna
Ce la faranno i nostri Azzurri a non farsi mettere KO dalle furie rosse?? Ke ne pensate? ki pensate siano i giocatori spagnoli da temere? Io penso: Jordi Alba Fernando Torres e poi?
1
25 giu 2013, 14:27

niandra82
Allora io so che $H=X+2 \pi K $ si distribuisce normalmente $N(\mu, \sigma_1^2)$. Dove $X \in [0, 2 \pi]$ e $K in Z$. Prendo una variabile $Y$ con distribuzione $N(0, \sigma_2^2)$. La variabile $Z=X+ 2\pi K+Y$ ha distribuzione $N(\mu, \sigma_1^2+\sigma_2^2)$. Non conosco la forma chiusa della distribuzione di $K$. LA distribuzione di X a posso trovare tramite marginalizzazione: $f(X=x) = \sum_k \int_R f(Z=x+2 \pi k+y)dy$ Se definisco $G=2 \pi K + Y$ allora posso dire che ...
2
24 giu 2013, 00:10

GYX2
Salve a tutti Sto avendo qualche problemuccio nel comprendere la seconda parte della dimostrazione del seguente Teorema: L'insieme $ S_0 $ delle soluzioni del sistema lineare omogeneo $ AX=0 $ a $n$ equazioni ed $n$ incognite è un sottospazio vettoriale di $ K^n $ e si ha che: $ dimS_0=n-ρ(A) $ Fino al dimostrare che $ S_0 $ è sottospazio di $ K^n $ ci sto. Il problema lo incontro nel far mio il ragionamento per ...
7
25 giu 2013, 22:11

pengo1
Salve a tutti. Continuo, come in ogni mio post, a scusarmi per la mia scarsissima attività: se qualche moderatore lo richiede, mi ri-presento immediatamente Volevo porvi un problema che mi si è presentato studiando per l'orale di Analisi 2. C'è un teorema (che penso non abbia un nome specifico) che asserisce che in \(\displaystyle \mathbb{R}^n \) il grafico di una funzione \(\displaystyle f: \Omega \rightarrow \mathbb{R} \) Riemann-integrabile su \(\displaystyle \Omega \subset ...
10
23 giu 2013, 22:51