Forum
Domande e risposte su qualsiasi materia per scuole medie, superiori e università da parte della community di studenti.
Domande e risposte
Ordina per
In evidenza
Problema sulla forza in inglese
Miglior risposta
one skier of mass 82kg isdescending a 30° slope with a constant speed
-find the force-weight intensity of the parallel and the perpendicular components ofthe slope
Sia $ABC$ un triangolo e siano $A_1, B_1, C_1$ le proiezioni di un punto interno $O$ sulle altezze ($A_1$ è la proiezione sull'altezza relativa a $BC$, e così via). Dimostrare che se $A_1A=B_1B=C_1C$, allora si ha $A_1A=B_1B=C_1C=2r$, dove $r$ è il raggio del cerchio inscritto in $ABC$.
Un pianeta in moto intorno al Sole descrive un'orbita ellittica di cui il Sole occupa un fuoco; i semiassi dell'ellisse sono a e b, rispettivamente. Si determini il valore dell'accelerazione centripeta del pianeta in un punto P=(x,y), della sua orbita sapendo che il modo si svolge con velocità areolare costante S' (S' sarebbe la velocità areolare costante).
La mia idea è stata: manipolare $ x^2/a^2+y^2/b^2=1 $ Però derivandola una volta, ho ottenuto $ (xdot(x))/a^2 +(ydot(y))/b^2=0 $ però il significato di questa ...
Mi chiedevo...se ho un campo $F$ ed una sua estensione $E$ e considero $alpha\inE$ trascendente, allora posso dire che $F<=F(alpha^2)<=F(alpha)$.
Per quanto riguarda la prima inclusione so che è sicuramente propria, cioè $F<F(alpha^2)$ perchè se $alpha^2\inF$ allora $alpha$ sarebbe algebrico su $F$ e invece non lo è.
Ma per quanto riguarda la seconda inclusione è sempre vero che $F(alpha^2)<F(alpha)$?
Salve a tutti, facendo qualche esercizio di topologia per l'esame mi sono imbattuto in questo; intuitivamente ci sono, anche perchè non è complicato, ma mi manca la formalizzazione.
Data una retta $LsubRR^2$, cioè $L={(x,y)inRR^2 : ax+by=0}$, con $a,b$ non entrambi nulli, dimostrare che $L$ con la topologia di sottospazio indotta da $RR^2$ con l'euclidea è omemorfo a $RR$ con l'euclidea.
Allora io ho pensato di procedere così: prima di tutto ho ...
Ho il seguente esercizio:
Ma io non capisco cosa vuole?
Insomma, vuole che scrivo l'equazione del moto ma non devo risolverla, bene, ma come si puo' pensare questo sistema per arrivare ad una conclusione
Il viandante ed ermes (211150)
Miglior risposta
Il viandante ed ermes
salve ragazzi mi trovo in difficoltà sulla risoluzione di questa equazione esponenziale, mi date una mano?
Versione serse contro la grecia
Miglior risposta
versione dda atena, mi serve per oggi! Grazie mille in anticipo:)
Ciao a tutti!
Devo calcolare il volume risultante dall'intersezione di $x<= 4 - y^2 - 9z^2$ e $x>= 4y^2 + 9z^2$. Il problema è che non riesco nemmeno a capire quale sia il dominio d'integrazione.
Qualcuno potrebbe aiutarmi? Grazie
L'esercizio che ho fatto è il seguente:
Un ragazzo tira una cassa di $50 kg$ con una corda che forma un angolo di $30°$ con l'orizzontale. Il coefficiente d'attrito statico tra cassa e pavimento è $\mu_s = 0.3$ e quello dinamico è $\mu_d = 0.2$. Calcolare il modulo della massima forza $F_max$ che il ragazzo può esercitare senza che la cassa si metta in moto. Se il ragazzo esercita una forza di modulo $F_1 = 1.2 * F_max$ calcolare l'accelerazione della cassa ...
Intorno ad una puleggia cilindrica di raggio R, libera di ruotare intorno al suo asse orizzontale, è avvolta una fune ideale con appeso ad un capo un corpo di massa m=5kg: Una sbarra omogenea di lunghezza L=40cm e massa M, formante un angolo di 30° rispetto all'orizzontale, è appoggiata sulla puleggia(senza intralciare la corda) in un punto posto a distanza h=28cm dall'estremo della sbarra che è incernierata in O. Nell'appoggio tra sbarra e puleggia si sviluppa un attrito statico con μ=0.5= ...
Buon pomeriggio ,
qualcuno puoi aiutarmi con il seguente limite di funzione ?
$ lim_(x -> 1)\frac{(1+logx)^{\frac{1}{3}}-1}{log^2(1+(x-1)^{\frac{1}{3}})}sin(\frac{1}{x-1}) $
Svolgimento
$ lim_(x -> 1) \frac{\frac{(1+logx)^{\frac{1}{3}}-1}{logx}logx}{(\frac{log^2(1+(x-1)^{\frac{1}{3})}}{(x-1)^{\frac{2}{3}}})(x-1)^{\frac{2}{3}}}sin(\frac{1}{x-1})=lim_(x -> 1) \frac{\frac{1}{3}logx }{(x-1)^{\frac{2}{3}}}sen\frac{1}{x-1} $
E qui mi blocco
Suggerimenti ?
Buongiorno
mi servirebbe sapere se svolgimento e risultato di questo limite sono corretti:
$ \lim_{x\to0^+}\frac{(3^{x+1}-3)x^{3k}}{(2^x-\sqrt{x+1})sin\sqrt{x^7}} $
Svolgimento
Per $ k>= 0 ,k<0 $ il limite si presenta sotto forma indeterminata.
Si ha:
$ \lim_{x\to0^+}\frac{(3^{x+1}-3)x^{3k}}{(2^x-\sqrt{x+1})sin\sqrt{x^7}} =\lim_{x\to0^+}\frac{3x\frac{(3^{x}-1)}{x}x^{3k}}{-(\sqrt{x+1}-1+1-2^x)\frac{sin\sqrt{x^7}}{\sqrt{x^7}}\sqrt{x^7}}=\lim_{x\to 0^+}\frac{3x*ln3*x^{3k}}{-x(\frac{\sqrt{x+1}-1}{x}-\frac{2^x-1}{x})\sqrt{x^7}}=\lim_{x\to 0^+}\frac{3x*ln3*x^{3k}}{-x(\frac{\1}{2}-ln2)\sqrt{x^7}}=\lim_{x\to 0^+}\frac{ln(27)}{ln(\frac{2}{\sqrt{e}})}*x^{3k-\frac{7}{2}}$
In definitiva abbiamo :
$ 0 $ se $ k>\frac{7}{6} $
$ +\propto $ se $ k<\frac{7}{6} $
$ \frac{ln27}{ln\frac{2}{\sqrt{e}} $ se $ k=\frac{7}{6} $
Corretto?
Ciao a tutti,
Ho un dubbio sul passaggio matematico riguardante come ottenere l'accelerazione facendo la derivata seconda dello spazio in funzione del tempo,cioè:
io so che:
$ vec(v) = (dvec(s))/dt $ dove $vec(s)$ è il vettore spostamento
e poi:
$ vec(a)= (dvec(v))/(dt) = d((dvec(s))/dt) $
adesso non so che passaggio fare per ottenere : $ (d^2vec(s))/dt^2 $
Spero possiate aiutarmi
Ciao a tutti vorrei un consiglio... A marzo ho fatto i test presso il politecnico di torino per la facoltà di ingegneria facendo il punteggio di 24. Ora non so se rifare il test o aspettare la graduatoria a settembre in quanto negli anni passati con questo punteggio si è passati. Cosa mi consigliate fare? Grazie mille