Forum

Domande e risposte su qualsiasi materia per scuole medie, superiori e università da parte della community di studenti.

Domande e risposte

Ordina per

In evidenza
In evidenza
Più recenti
Più popolari
Con risposta
Con miglior risposta
Senza risposta
pierot
65.6 g di nitrato di calcio vengono aggiunti ad 750 ml di una soluzione 0.1 M di acido acetico (K a = 1.8 ∙ 10 -5 ). Calcolare la pressione osmotica a 25°C della soluzione ottenuta e la sua temperatura di congelamento, sapendo che la densità è 1.12 g cm -3 e che K cr dell’acqua è 1.86°C kg mol -1 .
1
26 mag 2016, 23:27

pierot
Si calcoli il pH a 25°C di una soluzione ottenuta mescolando 500 ml di una soluzione acquosa contente 6.8 g di formiato di sodio con 500 ml di una soluzione 0.1 M di HClO 4 , sapendo che la K a dell’acido formico è 1.78 ∙ 10 -4 . Determinare il volume di soluzione 0.05 M di NaOH da aggiungere alla soluzione di partenza perché il pH diventi 3.9.
1
26 mag 2016, 23:36

NefGin
Ho un dubbio per quanto riguarda le leggi orarie. Se io ad esempio ho le seguenti leggi: x(t) = t^2-3t y(t) = t^2-2t E mi interessa l'espressione del modulo della velocità in funzione del tempo... Io posso ricavare le componenti della velocità derivando le due leggi precedenti, e poi ricavarne il modulo, no? Così facendo ottengo che l'espressione del modulo della velocità è: mod(v)= sqrt( 8t^2 -20t +13) La domanda è: posso anche ricavare il modulo della velocità derivando il modulo del ...

randomize
Sia $D(z_0,r)$ il disco chiuso complesso di centro $z_0$ e raggio $r$ e sia la funzione $f : D(z_0,r) rarr C$ tale che $f(z_0)=0$ Come posso calcolare il seguente limite: $lim_(r -> 0^+)(Sup(abs(f(D(z_0,r)))))/r$ Io ho provato a ragionare così: Aggiungendo l'ulteriore ipotesi che $f$ sia olomorfa, si ha che $f$ ha il massimo modulo sul bordo di $D$, per cui posto $abs(f(z_max))=Sup(abs(f(D(z_0,r))))$ posso scrivere $z_max=z_0+r*e^(i*t)$ e ...
4
25 mag 2016, 01:40

NotteOscura
Ciao a tutti, questo è il testo dell'esercizio: \(\displaystyle y'= \frac{y^3}{1+x^2} \) Ho provato a risolverla così: \(\displaystyle \frac{dy}{dx} = \frac{y^3}{1+x^2} \) \(\displaystyle dy=\frac{y^3}{1+x^2}dx \) \(\displaystyle \frac{dy}{y^3} = \frac{1}{1+x^2}dx \) Divido tutto per y^3 \(\displaystyle \int\frac{1}{y^3}dy = \int\frac{1}{1+x^2}dx \) Li metto sotto il segno di integrale \(\displaystyle \int ? = tan^-1 \) Ecco da qui praticamente non so come ...
3
25 mag 2016, 00:35

kobeilprofeta
Sia $x in [0,1]$, dimostrare in modo alternativo che $(1-x)^n<=1-x^n$ Con alternativo intendo senza induzione e senza altri risultati classici dell'analisi Nota: la "dimostrazione" che ho in mente io e' tra virgolette e abbastanza "fantasiosa"
5
26 mag 2016, 11:43

Genny_it
l'equazione è tratta da un problema di cauchy ed è la seguente: $y'=((-2x)/(1-x^2))y+(4x)/(1-x^2)sqrt(y)$ Procedo con la risoluzione in questo modo: $sqrt(y)=z$ $z'=(1/(2sqrt(y))y')$ $2z'=(y')/sqrt(y)$ Sostituisco nell'equazione di partenza ed ottengo: $z'+x/(1-x^2)z=(2x)/(1-x^2)$ Applica la formula per calcolarmi $z(x)$ ottenendo quindi questo: $z(x)=e^(-int(x/(1-x^2))dx)[c_1+int((2x)/(1-x^2)e^(int(x/(1-x^2))dx)) dx];$ inizio a svolgerlo e ottengo: $z(x)=e^(1/2ln|1-x^2|)[c_1+int (2x)/(1-x^2)e^(-1/2ln|1-x^2|) dx]$ da cui: $z(x)=e^(lnsqrt(|1-x^2|))[c_1+int(2x)/(1-x^2)|1-x^2|^(-1/2)dx]$ poi ho continuato a risolvere l'espressione tralasciando i valori ...
8
24 mag 2016, 16:05

ilaria.il
cerco un titolo per la mia tesina sui bambini mi serve subito devo andare a stamparla aiutatemiii..... non trovo nulla su internet
2
16 giu 2015, 15:51

AmarildoA
Salve ragazzi, Questo è l'esercizio proposto: Posto $A = {x \in R: x = \frac{n+(-1)^n(n+1)}{n+1}, n \in N}$, dire quale delle seguenti affermazioni è $\color{red}{vera}$: 1 - L'insieme A ha un numero finito di punti di frontiera 2 - L'insieme A ha un numero non finito di punti interni 3 - L'insieme A ha un numero non finito di punti di accumulazione 4 - L'insieme A ha un numero finito di punti di accumulazione Io solitamente in questo tipo di esercizi vado ad inserire i primi valori di $N$, per rendermi conto ...
2
26 mag 2016, 17:58

astruso83
Salve a tutti, In una dispensa trovata in rete sul tema dell'induzione elettromagnetica, ho trovato: "...Non si puo' definire una differenza di potenziale (d.d.p) all'interno di un induttore, perche' il campo indotto non e' conservativo, si puo' definire una d.d.p ai capi dell'induttore che e' l'opposto della f.e.m autoindotta...." La d.d.p e' uguale all'integrale di linea del vettore campo elettrico (solo se il campo e' conservativo). Essendo il campo elettrico indotto all'interno di un ...

nullazzo
Salve a tutti vorrei sapere se è possibile avere la traduzione delle frasi 1-2 pagina 241 dell'esercizio 3 e 4. Il libro è Ellenisti 2. Grazie in anticipo!
4
26 mag 2016, 13:46

n@t
Buongiorno, propongo il seguente problema: Una partita di semi ha un tasso di germinazione del 70%. Piantando due semi, qual è la probabilità che germini una sola pianta? Pensavo ad una probabilità condizionata ma non ne sono sicuro.
5
n@t
26 mag 2016, 09:56

17re87
ciao a tutti, volevo chiedervi come si definisce, o se esiste un modo per definire, l'insieme delle parti di un insieme infinito. Per un insieme finito di $n$ posso riconoscere e dunque enumerare tutti i suoi sottoinsiemi (ne sono $2^n$ compresi quello vuoto e l'insieme stesso), invece per un insieme infinito come stanno le cose??

giorgitaesposito
La strada non presa Miglior risposta
Questa poesia e tutti gli esercizi, per favore.
1
25 mag 2016, 18:58

emiperone97volley
Qualcuno mi può aiutare a trovare dei collegamenti? Frequento il liceo linguistico. Questo è quello che sono riuscita a collegare : Filosofia: Kierkegaard (l'individuo che prova angoscia davanti a innumerevoli possibilità) Spagnolo: lo fatal di Ruben Darío Storia: avevo pensato all Italia all'entrata della prima guerra mondiale con gli interventisti e i neutralisti oppure la guerra fredda con la questione di cuba Arte: la pubertà di Munch Mi manca scienze, italiano e inglese. Grazie in ...
1
26 mag 2016, 13:37

simonebilleri
Tesina sui jeans e il loro valore simbolico
0
26 mag 2016, 19:51

del_ta
Ciao, se ho una lamina con un foro quadrato per calcolarmi il momento d'inerzia devo sommare quello della lamina a quello del foro, giusto? Ma come me lo calcolo il momento d'inerzia del foro? Io ho pensato di considerarlo come una lamina omogenea con massa negativa e poi usare le formule generiche per un quadrato, è giusto? Ma così facendo non viene momento d'inerzia negativo?

Lucajuve100!11
L istogramma rappresenta la distribuzione di frequenza, non capisco perché la 1 d è la funzione di ripartizione empirica da cosa si deduce?

must4in3
Buongiorno a tutti, è la prima volta che scrivo in questo forum.. mi trovo di fronte un problema di geometria che non riesco proprio a risolvere. Premetto che per voi utenti potrà forse risultare di una banalità disarmante, ma per me risulta complicato non avendo quotidianamente a che fare con problemi di questo genere. Allora il problema è il seguente: Ho un punto (a) che può orbitare di 360° attorno al suo centro, con raggio costante e determinato (il punto è vincolato con il centro). Di tale ...
5
25 mag 2016, 19:06

castellone.mena
Come collegare i pannelli fotovoltaici, quindi l'energia rinnovabile alle materie di: Italiano e Storia. Per un istituto tecnico.
3
26 mag 2016, 13:52