Forum
Domande e risposte su qualsiasi materia per scuole medie, superiori e università da parte della community di studenti.
Domande e risposte
Ordina per
In evidenza
Una molla di costante elastica $25 N/m$ viene compressa di $2 cm$ per lanciare un proiettile di 3 grammi e capacità termica $2 J/K$ contro un blocco di legno dove poi vi si conficcherà.Quale sarà il massimo aumento di temperatura.
Allora io ho trovato l'energia potenziale della molla,una volta trovato il valore l'ho sostituito all'equazione $Q=mcT$ ho quindi isolato delta T ma il risultato non è corretto potete spiegarmi dove sto sbagliando?grazie
Ragazzi versione di greco urgente,per favore mi potreste aiutare?
La versione è "Morte di Cleopatra"
Inizia così "Και τις ηκεν απ' αγρου κιστην....κατακειμενην κλινη κεκοσμημενην βασιλικως" Quella su internet è sbagliata
Datemi una mano per favore ragazzi
Miglior risposta
Ragazzi versione di greco urgente,per favore mi potreste aiutare?
"Morte di Cleopatra"
"Και τισ ηκεν απ αγρου...κεκοσμηνενην βασιλικοσ"
Ciao a tutti! Avrei bisogno di aiuto per un problema di fisica. Il problema è il seguente:
Un materassino gonfiabile ha dimensioni 2m x 1m x 10cm ed è gonfiato alla pressione di 1,5 atm. Ci si stende una persona di massa 70kg, occupando circa la metà della superficie del materassino. Qual è la variazione di volume del materassino?
Ho provato a risolverlo ma non ci sono riuscita!! Grazie in anticipo a chi mi aiuterà!
Stavo dimostrando un teorema di statistica ma la formuletta finale che ho ottenuto differisce da quella del libro di un fattore, che sospetto (e spero) sia in realtà lo stesso identico ma scritto in un altro modo. Nel membro di sinistra quello che ottengo, nel membro di destra quello che avrei dovuto ottenere (e in mezzo l'azzardato uguale ) :
$ [g^-1(x)]' = 1/(g'(g^-1(x)) $
L'espressione mi ricorda un po' il teorema della derivata della funzione inversa, e quindi potrebbe essere utile usare la ...
ciao!
ho il seguente esercizio che sembra difficilotto
sia $(X,d)$ uno spazio metrico completo e sia $A$ un sottoinsieme aperto.
Dimostrare che esiste una metrica $h$ su $A$ tale per cui $(A,h)$ sia completo e induca la topologia di sottospazio
ho cominciato ragionando sul primo punto chiedendomi che proprietà dovesse rispettare una possibile metrica.
Pensando ad un esempio suggerito come hint, ...
Buongiorno,
ho la seguente generalizzazione del teorema ponte, nel caso in cui il limite di una funzione, va calcolato in un intorno $+ infty$ o $- infty$.
Vi riporto l'enunciato:
Condizione necessaria e sufficiente affinchè si abbia $lim_(x to +infty) f(x)=l in mathbb{R^{\prime}}$ è che per ogni successione reale $x_n$ per la quale $x_n to + infty$ $(x_n to - infty)$, si abbia $lim_(n to + infty) f(x_n)=l$
Suppongo che la successione sia monotona, quindi, sfrutto il teorema sulle successioni ...
buongiorno a tutti. qualche anno dopo aver dato analisi 2 mi trovo, studiando altre materie, con un dubbio sulle derivate parziali. vi prego di non scannarmi, probabilmente è una cosa davvero stupida ma non riesco a venirne a capo. il mio dubbio fondamentalmente è su cosa si intende per dipendenza esplicita. banalizzo al massimo la questione.
le mie variabili sono $x$ e $y$.
definisco una funzione $f(x)$ (generica).
a questo punto, definisco anche una ...
Conoscete per caso una dimostrazione della paracompattezza degli spazi metrici separabili?
So che ogni spazio metrico è paracompatto ma la dimostrazione è abbastanza difficile, volevo sapere se per gli spazi separabili ce ne fosse una particolarmente più semplice. Anche perché mi sembra di aver letto che nell'articolo in cui ha introdotto la paracompattezza, Dieudonnè avesse dimostrato proprio questa cosa, lasciando aperto il caso generale, ma non saprei come consultare quell'articolo e non so ...
Come mi riconduco al limite notevole di questa funzione ? Il problema è eliminare il sen ...
$lim_(x->0)((e^(3x)-1)/(sen5x))$
ovviamente mi voglio ricondurre a
$lim_(x->0)((e^(x)-1)/(x))$
Lo potrei fare con hopital ma se possibile voglio vedere qualche trucco per i lim notevoli . Grazie
Non riesco a risolvere questo integrale
$\int ln(x^2)/(x) dx$
Ho pensato di integrare per farti con $ln(x^2)=f$ e $x=g'$ però non riesco poi ad arrivare ad un risultato...
Grazie
Ciao a tutti...il limite per il quale ho dei dubbi è il seguente $lim_(x->0) x(1+ln^2|x|)$ .In particolare sono indeciso,visto che è presente il valore assoluto, se si tratta di una forma indeterminata del tipo $0$ $*$ $ oo $ oppure se il risultato del limite è zero proprio perchè,considerando che il limite tende a zero,il logaritmo di zero non esiste. La presenza del valore assoluto cosa comporta? E' come se il limite tendesse a zero da destra e quindi si viene ...
Una particella segue un percorso circolare. Se la velocità di una particella in un certo istante è $v=(2m/s)î - (2m/s)ô$, in quale quadrante si trova al momento la particella, supposto che si muova in senso (a) orario o (b) antiorario?
$î$ e $ô$ sono versori rispettivamente dell'asse x e dell'asse y.
Non riesco proprio a capire come poter rispondere al quesito, mi dareste una mano?
Grazie in anticipo.
Problema di geometria.. Non so proprio come iniziare :/
Miglior risposta
in un trapezio rettangolo il perimetro è 36 cm e l'altezza è congruente alla base minore la base maggiore supera il lato obliquo di 4 cm e il doppio dell'altezza supera di 2 cm il lato obliquo. Questo trapezio viene fatto ruotare di 360° attorno alla base maggiore. Calcola l'area della superficie e il volume di questo solido. Grazie in anticipo eheh
Ho questo problema: è dato l'arco $AB$, sesta parte di una circonferenza di centro $O$ e di raggio $r$ ed è condotta la tangente all'arco nell'estremo $A$. Determinare sull'arco $AB$ un punto $C$ in modo che, indicata con $D$ l'intersezione della tangente con il prolungamento del raggio $OC$, sia $rsqrt(2)$ la somma dei segmenti $CD$ e $AD$.
Il problema ...
Ciao!
Ho il seguente esercizio:
sia $f:X->Y$ una funzione
$•$ Se è continua allora $Gamma_f$ è omeomorfo a $X$
$•$ Se $Y$ è T2 allora $Gamma_f$ è chiuso nella topologia prodotto
primo punto
Prendiamo la funzione $g:X->Gamma_f$ definita come $g(x)=(x,f(x))$
Banalmente è iniettiva e surietta inoltre è continua poiché le componenti lo sono(la funzione identità è banalmente continua).
Ora basta mostrare che ...
Ciao!
Devo risolvere questo esercizio e mi inghippo alla fine
sia $(X,T)$ uno spazio topologico a base numerabile.
Se $F$ è un ricoprimento aperto allora esiste un sottoricoprimento numerabile
Posto $B={B_i, i in NN}$ una base numerabile.
Sono partito applicando due volte l’assioma della scelta
1. Posso trovare una applicazione $A:X->F$ per cui $x in A(x), forallx inX$
2. Posso trovare una applicazione $i:X->NN$ per cui $x in B_(i(x))subsetA(x)$
Risulta evidente ...
Parto subito con un esempio.
Sono informazioni tratte dal libro Algoritmi e strutture dati, ed. 2, di Bertossi e Montresor.
C'è un algoritmo molto semplice, il seguente:
"il minimo di un insieme A è l'elemento di A che è minore o uguale ad ogni elemento di A".
Questa ricerca richiede che ogni valore sia confrontato con tutti gli altri, per un totale di n(n-1) confronti, dove n è la dimensione di A.
Viene abbozzato un algoritmo descritto così: si sceglie il primo elemento di A come minimo ...
Ciao a tutti,
ho qualche difficoltà a capire il nesso tra integrale definito e integrale indefinito. Mi è chiaro che l'integrale definito, detto veramente in soldoni, è la somma dell'are dei rettangoli che posso disegnare tra la curva della funzione e l'asse delle ascisse. Il che, se la base dei rettangoli tende a 0, mi da esattamente l'area sotto la curva. Fino a qui è tutto molto intuitivo.
Nei vari testi che ho letto dopo aver spiegato l'integrale definito, si passa a spiegare l'integrale ...
Dimostrare che le persone che hanno stretto la mano ad un'altra persona un numero dispari di volte sono in numero pari.
Cordialmente, Alex