Analisi superiore
Discussioni su calcolo di variabile complessa, distribuzioni, Trasformata di Fourier, Teoria della misura, Analisi funzionale, Equazioni alle derivate parziali, Calcolo delle Variazioni e oltre.
Domande e risposte
Ordina per
In evidenza
Esiste una funzione olomorfa \( f: B_2(0) \setminus \overline{ \{ 1/n: n \in \mathbb{N} \} } \to \mathbb{C} \) tale che per ogni \(n \in \mathbb{N} \) la Laurent series di \(f\) in \(z_n=1/n \) possiede parte principale \(q_n(z) = (z-1/n)^{-n} \).
Io avrei detto che è falso perché gli \(1/n\) si accumulano in zero. Se esistesse \( f \) sarebbe una funzione meromorfa su \(B_2(0) \) ma le funzioni meromorfe hanno poli isolati mentre \(0\) non è isolato. Cosa sbaglio perché la risposta è ...

Devo calcolare il residuo di $ e^(1/(z-1))/(z-2) $ in 1 . Dato che 1 è una singolarità essenziale ho cercato di fare lo sviluppo in serie di laurent ma non so cosa ho sbagliato $ e^(1/(z-1))/(z-2)=(sum_(n = 0)^(+oo) ((1/(z-1))^n)/(n!))/-(1-(z-1))=sum_(n = 0)^(+oo)(((1/(z-1))^n)/(n!)*(-(z-1)^n))=-sum_(n = 0)^(+oo) 1/(n!) $

salve ragazzi,
devo dimostrare che le funzioni $ {1/{√L)sin({(k-1/2)πx)/L) }$ con $ k≥1 $ ristrette a $ [0,L] $ formano un sistema ortonormale completo su $ L^2([0,L] $ )
ho seri problemi per lo svolgimento di questo punto dell'esercizio, spero in una spiegazione semplice che non dia difficili nozioni scontate..

si consideri l'equazione $ -(d^2f)/dx^2=F(x) $ per la funzione $ f(x) $ con $ x∈[-L,L] $ con condizioni $ f(-L)=f'(L)=0 $. trovare i coefficienti di Fourier di $ f(x) $ nel sistema ortonormale completo $ {1/(√L)sin((k-1/2)π((x+L))/(2L))}_{k≥1 $ nel caso in cui $ F(x)=c $
il risultato è $ a_k=(64L^2c√L)/((2k-1)^3π^3 $
mi perdo nei calcoli e non c'è modo in cui io riesca a giungere quel risultato... forse c'è una strategia che mi sfugge per arrivarci risparmiando calcolI?

trovare le singolarità (anche per $ z=∞ $ ) e specificarne il tipo della funzione di variabile complessa $ f(z)=1/z 1/(1-e^(1/z) $
infine, calcolarne il residuo
potreste essere così gentili da spiegarmi il procedimento? so che bisogna fare un cambio di variabile $ z'=1/z $ quando si intende studiare una singolarità per $ z=∞ $ ma non ho mai capito come.. spero di poter finalmente capire con questo esempio
Siano \(f,g : \mathbb{C} \to \mathbb{C} \) olomorfe. Dimostra che \( h = e^f + e^g \) non possiede zeri oppure infiniti zeri in \( \mathbb{C} \).
Io ho pensato di fare così, funziona secondo voi?
Se \(f,g \) sono entrambe costanti allora chiaramente \(h\) non possiede zeri. Supponiamo senza perdita di generalità che \(g\) non è costante allora siccome \(e^f \) e \(e^{-f} \) non si annulla abbiamo che il numero di zeri di \(h \) è uguale al numero di zeri di
\[ h e^{-f} = 1 + e^{g-f} \]
in ...
Sia \( \{ e_n\}_{n \geq 1} \) una successione ortonormata in uno spazio prehilbertiano \(X\) su \(\mathbb{R} \) o \( \mathbb{C}\).
Siano inoltre (1) e (2) le seguenti proprietà
\[ \forall x \in X, x = \lim_{n \to \infty} \sum_{k=1}^{n} \left< x, e_k \right> e_k \ \ \ \ \ (1) \]
\[ \{ x \in X : \left< x, e_n \right> = 0 , \forall n \in \mathbb{N} \} = \{0\} \ \ \ \ \ (2) \]
1) Dimostra se \(\{e_n\}_n\) soddisfa (1) allora \( \{e_n\}_n \) è una base di Schauder.
2) Dimostra che per tutti ...

potreste gentilmente esplicitare i passaggi fatti per risolvere questo limite?
$ lim_{z->z_k}(z-z_k)1/z1/(1-e^(1/z))=-1/z_k1/((de^(1/z))/dz|_{z=z_k})=z_k $
La definizione che ho di prodotto infinito assolutamente convergente è la seguente.
Un prodotto infinito \( \prod_{j=1}^{\infty} a_j \) è chiamato assolutamente convergente se esiste \(n_0 \in \mathbb{N} \) tale che per ogni \( n \geq n_0 \) tale che \(a_n \neq 0 \) e se \( \sum_{j=n_0}^{\infty} \log(a_j) \) è assolutamente convergente.
La mia domanda è: immagino che prende una "branch" del logaritmo in cui è definito su \( \mathbb{C} \setminus r_{\theta} \) dove \(r_{\theta} := e^{i \theta} ...
Dimostra che se \( f: \mathbb{C} \to \mathbb{C} \) è intera allora \( f \circ f \) ha un punto fisso tranne quando \(f(z)=z+b \) per qualche \(b \in \mathbb{C} \setminus \{0\} \).
Io ho fatto in un modo diverso dalle correzioni e mi chiedevo se andasse bene.
Claim 1: Se \( f \circ f \) non ha punti fissi allora \(f\) è iniettiva.
Possiamo supporre \(f\) non costante siccome una funzione costante ha sempre uno e un solo punto fisso.
Supponiamo che \(f\) non sia iniettiva. Allora esistono ...

Ciao a tutti, premetto che non sono all'altezza di questa matematica super avanzata (almeno per me) che troverete di seguito, pertanto se sarò inesatto perdonatemi.
In un testo in inglese mi trovo una equazione differenziale di questo tipo:
$\sigma+\lambda \dot\sigma=\eta \dot\lambda$
E' un equazione per un sistema molla smorzatore per schematizzare il comportamento di un fluido visco-elastico teorico in condizioni lineare (su un unica direzione).
Di seguito, nel testo, è espressa la necessità che per estendere questo ...

Ciao a tutti, apro un altro thread con un quesito riguardante teorema della mappa aperta e corollari. Consideriamo due spazi di Banach $X$ e $Y$, ed un operatore lineare limitato $T:X rarr Y$. Si provi l'equivalenza delle seguenti affermazioni:
$\text{i) }T \text{ e' una mappa aperta di X su } T(X)$
$\text{ii)}EE M>0:AAyinT(X)$ $EEx in T^{-1}(y): norm(x)<= Mnorm(y)$
$\text{iii)}EE K>0:norm(x+ker(T))<=Knorm(Tx)$ $AAx inX$
L'implicazione $(i) rArr (ii)$ è una diretta conseguenza del fatto che le applicazioni aperte portano intorni dello zero in ...
Dimostra che tutti gli spazi Hilbertiani sono riflessivi.
Le soluzioni dicono quanto segue, ma io ho un dubbio. Secondo me la sua applicazione non è ben definita. Ma probabilmente sono io a fare confusione.
Sia dunque \( H \) uno spazio di Hilbert su \( \mathbb{F} = \mathbb{R} \) oppure \( \mathbb{C} \) e sia l'applicazione \( T : H \to H^{\ast} \) tale che \( (Ta)(x)= \left< x, a \right> \) per ogni \( x \in H \) che è una biiezione che soddisfa \( \begin{Vmatrix} Ta \end{Vmatrix}_{H^{\ast}} ...
Dimostra che se \(X \) è uno spazio vettoriale normato e \( X^{\ast} \) è separabile allora \( X\) è separabile. Deduci che \( \ell^1 \) non è riflessivo.
Indicazione: se \( \{ f_n: n \in \mathbb{N} \} \) è un sottoinsieme denso in \(X^{\ast} \), scegliere per ogni \(n \), \(x_n \in X \) tale che \( \left| f_n(x_n) \right| \geq \frac{1}{2} \parallel f_n \parallel \) e \( \parallel x_n \parallel \leq 1 \).
Allora pre il punto 1, ovvero dimostrare che \(X\) è separabile ci sono. L'unica cosa ...
C'è una parte della soluzione di questo esercizio che non capisco molto bene.
Sia \( p \in C^1([0,1],\mathbb{R}) \) tale che \( \min_{t \in [0,1] } p(t) > 0 \) e \( \int_0^1 p^{-1}(t)dt = 1 \). Dimostra l'esistenza di una successione \( \{ \mu_n \}_n \subset \mathbb{R} \) e di una successione ortonormata totale \( \{e_n\}_n \) di \( (C([0,1],\mathbb{R}),\left< \cdot,\cdot \right> ) \) tale che
\[ \left\{\begin{matrix}
-(p(s)e_n'(s))'& = &\mu_n e_n(s) \\
e_n(0)= e_n(1)=0& &\\
e_n \in ...

devo calcolare la singolarità a $ z=∞ $ della funzione di variabile complessa $ f(z)=α^{-z $ con $ α>0 $ parametro reale
per calcolare la singolarità per $ z=∞ $ ho pensato di esprimere $ α^{-z}=e^{-zlog(α)} $ e di fare lo sviluppo in serie di taylor dell'esponenziale centrato in $ z'=1/z=0 $ :
$ 1-zlog(α)+1/2(zlog(α))^2-1/6(zlog(α))^3 $
ma basta fare lo sviluppo di taylor o devo fare lo sviluppo di taylor-laurent?
scusate la confusione, sono i primi esercizi che faccio......
Sia uno spazio di Hilbert \( (H, \left< \cdot, \cdot \right> ) \) di dimensione infinita e un operatore lineare \( A \in \mathcal{L}(H) \) simmetrico e compatto t.q. \( (N(A), \left< \cdot, \cdot \right> \) è separabile. Sia ancora una successione ortonormata totale \( \{u_n\} \) di \(H\) formata da autovettori di \(A\) e la successione \( \{\lambda_n\}_n \) di autovalori corrispondenti. Per \( f \in C(\mathbb{R},\mathbb{R}) \) definiamo \( f(A):H \to H \) per
\[ \forall x \in H, f(A)x = ...
Siano degli spazi vettoriali normati \( X,Y\) e sia \( T \in \mathcal{L}(X,Y)\), dove \( \mathcal{L}(X,Y)\) denota lo spazio degli operatori lineari limitati. Dimostra che se \( \dim_{\mathbb{F}} R(T) < \infty \) allora \(T \) è compatto.
Dove \( \mathbb{F} = \mathbb{R} \) oppure \( \mathbb{C} \).
Non sono sicurissimo di come ho proceduto. Va bene secondo voi?
Ponendo \(n:= \dim_{\mathbb{F}} R(T) \) abbiamo che \( R(T) \cong \mathbb{F}^n\), sia dunque \( \{e_1, \ldots, e_n\} \) una base di \( ...

Propongo un problema che si è rivelato molto più difficile di quanto mi aspettassi.
Sia \( \{f_k\}_{k \in \mathbb{N}} \) una successione di funzioni in \( C^1(\mathbb{R}^d; \mathbb{R}) \) tali che
\[ \lim_{k \to + \infty} f_k(x) =0 \quad \forall \, x \in \mathbb{R}^d.\]
E' vero o no che
\[ \lim_{k \to + \infty} \inf_{x \in \mathbb{R}^d} |\nabla f_k(x)| =0\]?
Ovviamente sto indicando con \( |\cdot | \) la norma Euclidea su \( \mathbb{R}^d\) e con \( \nabla \) il gradiente.
Purtroppo non ...

$ d/dz(-ilog(z+i√(1-z^2)) $ con risultato $ -1/{√(1-z^2)} $
non riesco a venirne a capo, procedendo secondo le solite regole matematiche e considerando la $ i $ come costante numerica ottengo risultati diversi