Forum
Domande e risposte su qualsiasi materia per scuole medie, superiori e università da parte della community di studenti.
Domande e risposte
Ordina per
In evidenza
Carlo e Stefano trasportano il telaio di un motorino dal peso di 280N appeso con una corda a un bastone rigido, lungo 2,0m e di massa trascurabile. La corda è fissata sul bastone a 90m da Carlo. Calcola la forza che ciascuno di essi deve esercitare per sostenere il telaio.
devo studiare la convergenza di $ int_(0)^(+oo) (arctan(x^(-1))/(x^(1/3))) dx $
dapprima studio la convergenza in zero: $ int_(0)^(1) (arctan(x^(-1))/(x^(1/3))) dx $ .
il mio testo dice che l'integrale converge perchè: $ lim_(x -> 0+) arctan(x^-1)=pi/2 $ dunque esiste un
$ delta>0:∀x∈(0,delta)arctan(x^-1)/x^(1/3)<=2*1/x^(1/3) $ e poichè $ 1/3<1 $ alloora $ int_(0)^(1) (2)/(x^(1/3)) dx <+oo $ allora deduciamo per confronto che $ int_(0)^(1) (arctan(x^(-1))/(x^(1/3))) dx <+oo $ .
vorrei chiedervi una spiegazione del perchè di questi passaggi, in modo tale da provare a fare io lo studio della convergenza all'infinito
sono in una situazione non troppo bella: da quando mi sono messo internet A CASA MIA, mi arrivano sempre allarmi da divesi siti antispyware, e nongli posso fermare. mi mandano il mio ip, il paese dove sono e la lingua de mio pc. come posso fermargli? AIUTOOO!
mi serve uno slogan di 4 versi in rima alternata mi potete aiutare?
Buongiorno,
avevo un dubbio su questo passaggio, che ho letto scritto:
Da questo,
$\dot{\mu}_1(t)= r_1 \mu_1(t) - q_1+ \mu_1(t), \quad \quad \mu_1(T)=S_1,$
per $t\in[0,T]$ e con $S_1,q_1,r_1>0$.
Poichè vale questo dice, $$\dot{\mu}_1(t)|_{\mu_1(t)=0}=-q_i
Salve a tutti, ho dei dubbi circa questo esercizio. Vi riporto il testo:
"Considerare il seguente circuito, in cui T1: $V_T=0.6V$, $k=(1mA)/V^2$ e $V_A=∞$ e T2: $V_T=0.5V$, $k=(500μA)/V^2$ e $V_A=∞$ .
(a)Calcolare la potenza assorbita dalle alimentazioni in assenza di segnale ed il tempo di operatività del circuito se alimentato da una batteria da 3200mAh."
Nell'immagine ho aggiunto i valori di polarizzazione che ho calcolato, inoltre risulta ...
Non riesco a tradurre queste frasi potreste aiutarmi? Grazie
Ciao a tutti.
Ho un dubbio riguardo la classificazione delle EDP.
Consideriamo una EDP di secondo grado della forma:
$F(x,y,t, ... , u , (partial u)/(partial x) , (partial u)/(partial y) , (partial u)/(partial t) , ... , (partial^2 u)/(partial x^2) , (partial^2 u)/(partial y^2) , (partial^2 u)/(partial t^2) , ... ) = 0$
La EDP si dice lineare se è lineare in $u$ e nelle sue derivate.
La EDP si dice quasi-lineare se è lineare solo nelle derivate di ordine massimo.
Consideriamo le seguenti due EDP:
$1) (partial u)/(partial t) + u ((partial u)/(partial x)) = 0$
$2) (partial^2 u)/(partial x^2) (partial^2 u)/(partial t^2) - (partial^2 u)/(partial x partial t)=0$
Avrei due domande:
- Sapreste dirmi perché la $(1)$ è considerata quasi lineare?
Io avrei detto che è ...
Ciao , ho questo teorema la cui dimostrazione viene omessa (c'è il rimando ad un altro testo che non ho). L'ho lasciato stare per del tempo, solo che dopo un po' viene richiamato.
(Teorema) Le categorie che hanno i prodotti e gli equalizzatori sono complete.
(Dimostrazione) Sia \(\mathcal C\) una categoria con prodotti ed equalizzatori, \(\mathcal I\) una categoria e \(F : \mathcal I \to \mathcal C\) un funtore: voglio costruire un limite di \(F\). Per convenzione, indico con \(I\) e \(C\) ...
Salve,non so se questa è la sezione giusta per il mio dubbio comunque provo lo stesso a formularlo.Ho visto che su i testi di cuola superiore si fa riferimento a radicali aritmetici ed algebrici e non capisco il motivo di questa differenza,tutto questo mi confonde le idee.Qualcuno è in grado di spiegarmi questi concetti in maniera definitiva?Esiste un libro dove tutto ciò viene spiegato correttamente?Grazie
Un campo di numeri \(K\) è detto monogenico se esiste \( \alpha \in \mathcal{O}_K \) tale che \( \mathcal{O}_K = \mathbb{Z}[\alpha] \). Lo scopo di questo esercizio è di mostrare un ostruzione all'essere monogenico e di mostrare un esempio di campo non monogenico costruito da Dedekind.
Assumiamo che \(n \) è il grado di \(K \) e \(p < n \) sia un numero primo totalmente spezzato (totally splits?) in \(K\). Sia \( \alpha \in \mathcal{O}_K \) di grado \(n\).
a) Dimostra che
\[ \left| ...
percortesia mi aiutate a risolvere questo esercizio e me lo spiegate?
senx = 1 / senx ha come soluzione:
le opzioni erano tutte con 2k pi greco o similari, ma non le ho da scrivere qui.
Grazie mille
AVrei una domanda davvero banale riguardo gli omomorfismi in tal caso di semigruppi $(Z,+)$ in $(Q,+)$
cioè dato f:Z->Q, a |-> a/2
Vorrei provare che 0 di Z va in 0 di Q (neutro in neutro)
e mi chiedo: avendo $a ->a/2$ ho $0 -> 0/2=0$
Ma corretttamente avrei: $0_Z->0_Q/2=0_Z$ oppure $0_Z->0_Z/2=0_Z$ cioè non capisco se "al numeratore" di a/2 la a sia intesa già in Q o ancora in Z.
E' una domanda stupida ma essendo all'inizio vorrei chiarire fin da subito ...
devo discutere la convergenza dell'integrale $ int_(0)^(+oo) (e^x-1)/(arctan(√x^alpha)alpha^x dx $ al variare di $ alpha>0 $ .
allora ho calcolato $ lim_(x -> +oo) ((e^x-1)/(arctan(√x^alpha)alpha^x))/((e^x)/alpha^x)=2/pi $ ossia l'integrale di partenza è integrabile in senso generalizzato su $ [1,+oo) $ se lo è $ int_(0)^(+oo) e^x/alpha^x dx $ quindi calcolo $ lim_(a -> +oo) int_(1)^(a) (e/alpha)^x dx $ . la soluzione è che converge se e solo se $ alpha>e $ però non capisco quali sono i calcoli giusti da fare.. $ lim_(a -> +oo) ((e/alpha)^(x+1)/(x+1))|_(x=1)^(x=a) $ ?
Sto studiando un teorema che fornisce delle condizioni sufficienti affinché due integrali impropri commutino.
Siccome si tratta davvero di vedere un estratto preso paro paro dal libro (Zorich, Mathematical Analysis II, Capitolo 17.2), posto un'immagine:
dove l'equazione (17.23) che richiama nella dimostrazione è questa uguaglianza (cioè quando uno dei due integrali non è ancora improprio):
\(\displaystyle \int_c^d dy \int_a^\omega f(x,y) dx = \int_a^\omega dx \int_c^d ...
non so come formulare delle frasi di collegamento alla parola COLORE gli argomenti sono:
GIALLO GIRASOLI DI VAN GOGH
VERDE COME L’ECOLOGIA LA SIEPE
INGLESE IL PAESE ARCOBALENO DI NELSON MANDELA
Tematica:
Inquinamento da plastica.
Mi potreste aiutare a collegare le varie materie per favore?
Musica: Alan Walker (canto + testo)
Inglese: (Creative Recycling...)
Francese: ( non so..)
Geografia: LA POSIZIONE (DOVE SI TROVA LA PLAST. NEI MARI EC..)
Scienze: (non so...)
Tecnologia: ( non so..)
Matematica: Grafici
Ciao, mi servirebbe sapere come funziona un orologio meccanico, in particolare quello del Big Ben. Ho cercato su internet ma non ho trovato niente. Grazie in anticipo!
ma nella nostra societò la vendetta può essere giustificata o deve essere sempre inaccettabile? per favore mi serve una risposta argomentativa entro stasera
grazie in anticipo
Avrei bisogno di sapere tutte le figure retoriche nella poesia ;sogno di pascoli urgente