Forum
Domande e risposte su qualsiasi materia per scuole medie, superiori e università da parte della community di studenti.
Domande e risposte
Ordina per
In evidenza
avrei due domanda da porvi riguardo i piani tangenti fatte dal prof ad un esame:
1)si enunci una condizine sufficiente affinche una superficie scritta in forma parametrica: $(x,y,z)=Phi(u,v)$ abbia il piano tange in un dato punto, Scrivere l'equazione di tale piano in forma parametrica
2)si enunci una condizone sufficiente affinche una superficie definita come luogo di zeri di una funzione $g(x,y,z) abbia il piano tangente in un dato punto. Scrivere l'equazione di tale piano come luogo di zeri ...
Serie di Taylor: so fare gli sviluppi, e ci mancherebbe, non so invece determinare il raggio di convergenza quando non conosco in modo esplicito la successione dei coefficienti.
So che esso per un noto teorema è pari al Limite per $n$ che diverge di $ |(a_n/a_(n+1))|$ ammesso che esista, spesso però nelle applicazioni è difficile (per me), noti i coefficienti, ricavare una legge generale che ne espliciti la successione.
Ad esempio, questo esercizio, in foto:
http://img812.imageshack.us/img812/9678/867i.jpg
Ho ...
In ritardo e poco originale, ma qui sono stati salutati personaggi ben più piccoli...
Non è più in carne e ossa in questo mondo un grande uomo: grazie a lui il Sudafrica è uscito dall'Apartheid e si avvia verso una società riconciliata in cui il colore della pelle non importa più nulla, ma soprattutto grazie a lui noi tutti possiamo ritenere che sognare un mondo migliore non è solo utopia.
Addio Nelson Rolihlahla Mandela.
Per quanto la matematica mi piaccia, il mio vero interesse è la fisica (premetto che sono autodidatta in tutto). Ma a quanto pare per studiare quest'ultima per bene ho bisogno dell'analisi matematica, ma non sono sicuro di avere tutti i prerequisiti. Questi sono gli argomenti che conosco adesso, ad un livello liceale:
-Equazioni e disequazioni algebriche (algebra del biennio per capirci)
-Geometria euclidea piana ad un livello abbastanza approfondito
-Geometria analitica
-Equazioni e ...
a)calcolare quanti gr di acido acetico (Ka 1.8*10^-5) si devono aggiungere a 100ml di sol 0.5M di acetato di sodio per avere una sol tampone a pH=4.5
b)se a tale sol si aggiungono 0.4gr di NaOH di quanto varierà il pH?
Come si fa a scaricare i film gratis da internet?
Grafico funzioni
Miglior risposta
Traccia il grafico delle seguenti finzioni: (dominio, simmetrie, segno, intersezioni, asintoti, max e min, concavità e flessi, grafico)
[math]y=(x^{2}-2x-3)e^{-x}[/math]
Il risultato dovrebbe essere: Asintoti: y=0(destro), minimo per
x=2- [math]\sqrt{5}[/math] , massimo per x=2+ [math]\sqrt{5}[/math] , flessi per x=3+ [math]\sqrt{6}[/math] e per x=3- [math]\sqrt{6}[/math]
Ho provato a farlo ma non mi risula giusto, sapete dirmi dove ho sbagliato? Grazie =)
Purtroppo non sono riuscito a capire come risolvere questo esercizio da due punti.
_____
Sia u:R->R, la soluzione al problema di Cauchy:
u'(x) = x/u(x), Per ogni x appartenente a R
u(0) = 6
Allora (u(-1))^2 =??????
_____
Salve a tutti
Scrivo il testo dell'esercizio.
Calcolare il determinante det A e il rango r(A) della matrice
\begin{pmatrix}
1 &-4 &3 &-4 \\
-6 &a & 3 & 3\\
1 &1 & -2 & 1\\
-2 & 1 &1 & b
\end{pmatrix}
Se $(0,1,0,0)$ $\notin$ $R_{A}$ quanto vale il numero reale a?
Conviene ridurre la matrice A in una matrice a scalini?
\(\displaystyle xu'(x)−2u(x)=8x^4,∀x>0 \)
\(\displaystyle u(1)=0 \)
Allora \(\displaystyle u(2)=? \)
Ecco come ho proceduto:
ho tolto la "u" perché mi confonde...
\(\displaystyle xy'(x)−2y(x)=8x^4,∀x>0 \)
\(\displaystyle y(1)=0 \)
Poi...
\(\displaystyle xy'(x)=8(x^4)+2y(x) \)
\(\displaystyle y'(x)=8(x^3)+(2y(x))/x \)
Poi ho fatto l'integrale
\(\displaystyle ∫(8(x^3)+(2y(x))/x)dx \)
Ma provando a risolvere l'integrale mi ritrovo:
\(\displaystyle 2x^4 + ∫(2y(x)/x)dx \)
\(\displaystyle 2x^4 + ...
salve,potresti aiutarmi nella risoluzione??? ho l'esame tra pochissimi giorni GRAZIE
1.si indica con qs=0.001 la probabilità di guasto del sistema,costituito da n=10 componenti disposti in serie.
Si vuole calcolare la probabilità qc di guasto di ogni singolo componente,considerandoli s-indipendenti.
2.ho una serie di 11 misure in tabella. assumendo un modello CDF di parametri mu e sigma,si valuti la probabilità di un nuovo campione di eguale dimensione per il quale l'errore di media stimata ...
Due ingegneri discutono dei pregi e difti di due razzi,il primo dei quali ha due motori,e il secondo quattro,tutti identici.I due razzi sono in grado di volare anche se non tutti i loro motori funzionano:basta che almeno la metà dei motori sia funzionante.Il primo ingegnere arguisce che il razzo a quattro motori è migliore di quello adue.Laltro ingegnererisponde invece:''io non posso rilevare la probabilità di rottura di un motore,perchè e un segreto militare,però sono in grado di assicurare ...
Salve, ho la seguente matrice parametrica, $3x3$:
$ A=( ( lambda -1 , lambda , 10/3 ),( 1 , -2 , lambda ),( 0 , 3 , 1 ) ) $ .
Il determinante di questa matrice è: $12-3lambda^2$.
La domanda dell'esercizio è la seguente:
Esiste $B$ tale che $AB=BA$ $AAlambda epsilon R$: vero o falso?
Io ho risposto: vero, se $B=I$ (I matrice identità), ma non ne sono convinto, vi chiedo una spiegazione convincente, grazie mile.
Buonasera
Volevo sapere se è giusto il procedimento che utilizzo per trovare imf e kerf.
Ad esempio, se ho una matrice $((1,2,3),(4,5,6),(7,8,9))$
Per trovare l'immagine devo imporre
f(1,0,0) = (1,4,7)
f(0,1,0) = (2,5,8)
f(0,0,1) = (3,6,9)
Di conseguenza ottengo una matrice che ha come righe le colonne della matrice predente, quindi:
$((1,4,7),(2,5,8),(3,6,9))$
Riduco a scalini e ottengo imf?
Per quanto riguarda kerf invece devo imporre tutte le righe della matrice uguali a zero e risolvere?
Ringrazio ...
Ciao, amici! Il mio testo di algebra, il Bosch, dice che, "usando la proprietà universale degli anelli di polinomi [che scrivo sotto e che chiamo 2.5/1 come sul Bosch per farvi riferimento in seguito] possiamo identificare [l'anello dei vettori di Witt] \(W(R)\) con l'insieme \(\text{Hom}(\mathbb{Z}[\mathfrak{X}],R)\)" di tutti gli omomorfismi di anelli \(\mathbb{Z}[\mathfrak{X}]\to R\) dove \(\mathfrak{X}=(X_0,X_1,...)\).
La proprietà universale degli anelli è enunciata nella seguente ...
Controllo esercizio su Equilibrio gassoso
Miglior risposta
Ho svolto un esercizio sull'equilibrio gassoso, ma non sono sicuro d'aver fatto bene..
Il carbammato di ammonio, NH4CO2NH2, si decompone secondo la seguente reazione :
NH4CO2NH2(s) -> 2NH3(g) + CO2(g)
sapendo che la costante di equilibrio a 25°C è Kp=2.31x10-4, calcolare la pressione totale, che si determina se alla temperatura di 25 °C in un recipiente di volume pari a 10.0 litri vengono inseriti 0.100g di CO2 e 1.00g di NH4CO2NH2
Allora..
Mi dice che vengono inseriti nel ...
Buonasera,
in questi giorni abbiamo trattato in classe il momento d'inerzia.
La prof. ci ha dato delle formule che però non ha dimostrato. C'è qualcuno che potrebbe farlo mostrando i vari passaggi?
Ha detto che se un corpo
1) è un $"guscio cilindrico"$ $I=mr^2$
2) se è un $"cilindro pieno"$ $I=1/2mr^2$
3) se è una $"sfera piena"$ $I=2/5 mr^2$
4) se è un'$"asta sottile"$ $ I=1/2mr^2$
Grazie
Calcolare il determinante di una matrice avente $b$ sulla diagonale principale, $a$ in tutte le posizioni sopra la diagonale e $-a$ in tutte le posizioni sotto la diagonale.
Ciao a tutti. Mi potreste risolvere queste frazioni algebriche??
1) 2a^4- a^5 fratto a^4-8a
2) 4x^2-12x+9 fratto 4x^2-9
3) 3x^2-2x-1 fratto x^2-2x+1
GRAZIE MILLE :con :cry
Salve a tutti ragazzi! ho fatto un pò di esercizi su integrali, ma arrivati a questo capitolo mi sono perso!
Si tratta di calcolare il baricentro di figure piane e non, il mio problema è che non riesco a capire quali estremi di integrazione adottare! vi pongo un esempio!
devo calcolare il baricentro di un semicerchio definito da:
\(\displaystyle x^2+y^2=0 \)
L'area del semicerchio risulta essere $ pi/2 $
da qui so che per simmetria il ...