Forum

Domande e risposte su qualsiasi materia per scuole medie, superiori e università da parte della community di studenti.

Domande e risposte

Ordina per

In evidenza
In evidenza
Più recenti
Più popolari
Con risposta
Con miglior risposta
Senza risposta
stella.rad85
Per la seguente struttura: 1. verificare l'isostaticità 2. determinare le reazioni vincolari 3. determinare le caratteristiche di sollecitazione 4. determinare l'equilibrio del nodo B 5. determinare con il Principio dei Lavori Virtuali la reazione del pendolo D Come devo continuare dopo aver trovato le reazioni vincolari??? Come si svolgono i punti 4 e 5?
1
5 gen 2016, 10:29

pepp1995
Dal libro mi si dice che: "un processo spontaneo è un processo che avviene senza l'intervento di alcun tipo di lavoro" Poi la prof fa l'esempio del libro fatto slittare su un piano con atttrito secondo cui: Sé facciamo slittare un libro su un piano , forniamo energia meccanica . Dopodiché per effetto del lavoro della forza di attrito , l'energia meccanica diventa termica. Quel che non mi torna è : "MA Sé LA FORZA DI ATTRITO FA LAVORO , COME FA AD ESSERE SPONTANEO?"

nick2.0
potete aiutarmi a tradurre questa versione perfavore? Civitatibus maxima laus est quam latissime circum se vastatis finibus solitudines habere. Hoc proprium virtutis existimant, expulsos agris finitimos cedere neque quemquam prope se audere consistere. Simul arbritantur hoc se fore tutiores, repentinae incursionis timore sublato. Cum bellum civitas aut inlatum defendit aut infert,deliguntur magistratus qui ei bello praesint et vitae necisque habeant potestatem. In pace nullus est communis ...
1
5 gen 2016, 15:23

cande95
Salve, sono alle prese con il seguente problema di cauchy: \( \begin{cases} y'= \sqrt[5]{{y}} \\ y(0)=0 \end{cases} \) Il problema ha due soluzioni: \( y_1(x)=0 \) e \( y_2(x)=\frac {4\sqrt[]{{2}} }{5 \sqrt [4]{5}} x^{\frac{5}{4}} \) Mi si chiede di giustificare perché questo non è in contraddizione con il teorema di Peano Picard. E' sufficiente dire che \( f(t,y)= \sqrt[5]{y} \) non ha le derivate continue in un intorno di 0 per poter giustificare la non validità del teorema ?
5
5 gen 2016, 14:33

Lavinia Volpe
a √ 2 perché diventa 2 √ 2a ?
8
27 dic 2015, 23:19

Patty841
1)In un parallelogramma, equivalente a un quadrato avente il perimetro di 44 cm, la differenza fra le altezze relative a due lati consecutivi misura 2 cm e una é 4/5 dell'altra. Calcola il perimetro del parallelogramma .........(54,45cm) 2)il perimetro di un triangolo isoscele é di 544 cm, la base supera il lato obliquo di 34 cm e l'altezza misura 136 cm. Calcola il perimetro di un quadrato equivalente ai 2/3 del triangolo.......................(384,6) 3) un parallelogramma é equivalente a ...

Crisso1
Ho una trave continua a 3 campate, nella seconda e terza campata ho un carico distribuito NON uniforme Per svolgere Cross mi occorrono i momenti di incastro perfetti di ciascuna campata. Per trovare i momenti di incastro perfetti della seconda trave ho fatto la media pesata dei due carichi distribuiti, e poi applicato con il carico equivalente la classica formula (q*l^2)/12; trovando come momenti agli incastri 16,67 kN*m. Inserendo la trave centrale in FTool infatti trovo che il momento di ...
0
5 gen 2016, 15:21

Dave951
Ciao ragazzi, sto studiando la seguente funzione: \(\displaystyle log(e^{-x}+|x|)-1 \) . Mi sono ricavato il dominio, \(\displaystyle f(0) \)e i limiti. Giunto al segno mi sorge un dubbio sulla correttezza del procedimento che ho seguito. Ho imposto che : \(\displaystyle log(e^{-x}+|x|)>1 \) , \(\displaystyle e^{-x} + |x|>e \), \(\displaystyle \frac{1}{e^x} + |x|>e \); \(\displaystyle 1+e^x |x|> e^{x+1} \), \(\displaystyle e^{x} |x|-e^{x+1} >-1\), \(\displaystyle e^x (|x|-e)>-1 \). Ora, ...
6
4 gen 2016, 00:01

lucapietrantuono95
Collegamento last minute chimica???? Nella tesina sui 7 vizi capitali, a cosa possi collegare chimica????? Uno anche banale vi prego
1
27 giu 2015, 13:54

alexdr1
Trovo difficoltà con questo limite mi aiutereste? $\lim_{n \to \+infty} ((-1)^n n^3 + n)$ Ho provato con le sottosuccessioni pari e dispari, ma trovo un piccolo problema. Definendo $(an)=((-1)^n n^3+n)$ Trovo: $(a2n)=((-1)^(2n) 8n^3 + 2n))$ $(a2n-1)=((-1)^(2n-1) (2n-1)^3 + (2n-1))$ $\lim_{n \to \infty} (a2n) = +infty$ $\lim_{n \to \infty} (a2n-1)= ?$ Non so come calcolare di quella dispari trovo una f.i.
6
4 gen 2016, 16:53

carlo-96
salve a tutti... sto riscontrando problemi con lo studio del dominio di questa funzione.... $ sqrt(ln(arctan(x) / 2)) $ come condizioni ho imposto che l'arcotangente sia positiva poichè argomento del logaritmo, e quindi x>0 e ho posto che il logaritmo sia maggiore o uguale a 0, ottenendo quindi che il suo argomento sia maggiore di 1 e quinti arctanx/2 > 1 --- > arctanx>2 e quindi x>tan2.... mettendo a sistema queste due condizioni mi viene come dominio x maggiore di zero, ma dovrebbe venirmi che la ...
4
5 gen 2016, 13:44

DaniGil
Con una bilancio a due piatti si intende individuare, fra 54 palline, l'unica che ha un peso superiore alle altre (le altre 53 hanno tutte lo stesso peso). Quante pesate sono necessarie per identificare la pallina più pesante? La soluzione è 4 ma a me torna 5 perchè: se metto su ogni piatto 27 palline prendo il piatto più pesante(1), successivamente di queste 27 palline ne faccio 2 gruppi lasciandone fuori 1 infatti se i 2 piatti daranno lo stesso peso vuol dire che la pallina esclusa è quella ...
4
5 gen 2016, 11:32

rikideveloper
Salve ho un problema con un integrale da risolvere per sostituzione, che è il seguente: $ intlog(x)/sqrt(x) dx $ Per risolvere in un esercizio devo usare il metodo di sostituzione e poi quello per parti, per sostituzione ho proceduto in questo modo: $ t=sqrt(x) $ $ t^2=x $ $ dx=2tdt $ Ho sostituito i valori poi ho usato il metodo per parti, ma il risultato che mi viene è sbagliato dovrebbe essere: $ tlog(t)-t $ riuscite ad aiutarmi?

Rocker_Grace
$ cos^2(n*pi/3) |sin(n*pi/3)| $ Buonasera a tutti o buongiorno a chi leggerà in mattinata Come utente sono nuovo del forum ma mi son trovato spesso a navigare tra le pagine di questo sito e vi devo dire che il vostro .. è proprio un gran bel lavoro ragazzi!! Prima di iniziare e esporvi il mio primo quesito vi auguro innanzitutto Buon anno a tutti!! Ecco ora credo possiamo cominciare.. Mi trovo ad affrontare la risoluzione di diverse trasformate zeta.. beh quelle più immediate riesco ancora a farle ...
1
2 gen 2016, 00:31

laraleo
Parabole e tangenti Miglior risposta
Perfavore datemi una mano ci sto uscendo pazza , grazie :) considera la parabola γ avente fuoco in F(0,8 ) e la retta di equazione y=-4 come direttrice, e sia P il punto di γ avente ascissa 3 . a) determina la retta t tangente a γ in P. b) nel fascio di rette parallele a t trova la retta r su cui γ stacca un segmento di lunghezza [math]\frac{3}{2}\sqrt{17}[/math] c) calcola l'area del triangolo che ha per vertici gli estremi della corda e il fuoco Aggiunto 18 ore 12 minuti più tardi: perfavore ...
1
4 gen 2016, 15:25

tomassi.ambrosiano
raga dovrei fare un tema su dei fatti di cronaca recenti potreste darmi una mano?
1
5 gen 2016, 03:35

bioeddie
Buongiorno a tutti, ho dei dubbi in merito a questo esercizio: dire quanti sono gli anagrammi della parola provvidenziale che iniziano e terminano con la stessa vocale. Premettendo che non ho molta dimestichezza con gli anagrammi, vi dico come ho provato a svolgerlo: Le vocali che si ripetono sono la $ e $ e la $ i $. Quindi ho disposto le due vocali all'inizio e alla fine della parola, calcolando le permutazioni delle lettere racchiuse, prima tra le due ...
2
5 gen 2016, 12:52

marcorocci26
Mi serve assolutamente la parafrasi dll'iliade (libro1) da 495 a 611 (la lite tra gli dei)grazie a tutti
1
5 gen 2016, 13:15

ionsirbu
Vorrei sapere se per risolvere questo integrale il modo in cui ho provato è giusto \( \int_, (e^xcos(e^x))/(cos^2(e^x)+sin(e^x)+2sin^2(e^x)) dx \) per prima cosa ho fatto \( e^x=t \) e poi quindi \( e^x dx=dt \) la funzione diventa quindi \( \int_, (cos(t))/(cos^2(t)+sin(t)+2sin^2(t)) dt \) poi visto che avevo il cos^2 l ho sostituito con 1-sin^ cosi mi diventa \( \int_, (cos(t))/(1-sin^2(t)+sin(t)+2sin^2(t)) dt \) ---> \( \int_, (cos(t))/1+sin(t)+sin^2(t)) dt \) poi un altro cambio ...
2
5 gen 2016, 12:48

Zabr0
La forza applicata a un oggetto puntiforme è data da $ F = F0(x/(x0) -1) $ ed è diretta lungo l'asse x. Trovate il lavoro speso per spostare l'oggetto da $ x=0 $ a $ x=2x0 $ a) tracciando la $ F(x) $ e valutando l'area sotto la curva b) calcolando analiticamente il valore dell'integrale Ps: gli zeri sono tutti a pedice, tranne quello di $ x=0 $ ovviamente mi servirebbe un aiuto con il punto b) Grazie in anticipo