Forum
Domande e risposte su qualsiasi materia per scuole medie, superiori e università da parte della community di studenti.
Domande e risposte
Ordina per
In evidenza

Salve a tutti,
ho da poco iniziato a studiare la Meccanica dei Continui in Scienza delle Costruzioni. Uno dei primi parametri di misura della deformazione che ho incontrato è il COEFFICIENTE di DILATAZIONE LINEARE. Il mio libro di testo è il Sollazzo volume 2: in particolare mi riferisco alle pagine 13 e 14. Il mio problema riguarda la dimostrazione relativa a questo coefficiente.
IL libro parte dal prendere un vettore $ dvec(P) $ con origine in P ed un altro vettore $ dvec(Q) $ ...

Sto provando ad integrare $frac{1}\{x(x+1)}$, ho tentato di integrarlo per parti, ma senza concludere nulla... non ho davvero idea di come potrei procedere.

Ciao Ragazzi
mi trovo in difficoltà con un esercizio, ovvero: calcolare il resto della divisione per 3 di \(\displaystyle 5^{427} \)
il mio ragionamento è stato questo (che poi l'ho preso dal libro):
la divisione di \(\displaystyle 5^{427} \) per 3 è come dire \(\displaystyle 5^{427} mod 7 \)
osservo che \(\displaystyle 5 \equiv 2 mod 3 \)
quindi posso dire che \(\displaystyle 5^{427} \equiv 2^{427} mod 3 \)
a questo punto dato che il MCD(2,3)=1 grazie ad un corollario del piccolo teorema ...


Il testo mi chiede di calcolare i massimi e i minimi assoluti della funzione \(\displaystyle f(x,y)=8/x+x/y+y \) nel triangolo di vertici:
\(\displaystyle P(1,1) P(4,1) P(4,4) \)
Calcolo prima le derivate parziali rispetto ad x ed y per vedere se ho punti critici.
\(\displaystyle fx(x,y)=-8/x^2+1/y \)
\(\displaystyle fy(x,y)=-x/y^2+1 \)
Metto a sistema e pongo uguale a zero come soluzione ho \(\displaystyle x=4,y=2 P(4,2)\)
Questo è un punto sulla frontiera, come lo valuto ? con l'hessiana? ...
Ciao a tutti, ho questo piccolo problema riguardo "un simbolo" su questa domana
( A n B )∩∅ e a che è uguale?
a) -A
b) insieme vuoto
c) A
d) Nessuno dei precedenti
Io sò di certo che sia A, ma non se ne capisce il motivo. Se ( A n B ) il simbolo tra i due è "Intersezione" allora dipende da quale insieme è contenuto nell'altro. Visto che il quesito non ci dice nulla a riguardo, supponendo sia B dentro A (o vicenversa) ottengo da questa operazione: A n B = A
Successivamente svolgo A ...
$ int_(0)^(1)( (sqrt(1-x)-sqrtx)/(2sqrt(1-x)sqrtx) ) dx $
Ho considerato la somma dei seguenti limiti:
$lim c->(1^-) int_(0)^(c)( (sqrt(1-x)-sqrtx)/(2sqrt(1-x)sqrtx) ) dx $ che mi dà$1$
e
$lim c->0^+ int_(c)^(1)( (sqrt(1-x)-sqrtx)/(2sqrt(1-x)sqrtx) ) dx $ che mi dà $0$
Ora $0+1=1$ Perché il ragionamento è errato?
Buon pomeriggio,
Ho un dubbio su uno svolgimento di un limite. Si tratta di un limite con forma indeterminata $\infty/\infty$.
Questo è il mio svolgimento
$\lim_{x \to \-infty}x^3*ln((3x^2+2)/(2x^4-sqrt(3)))$ = $\lim_{x \to \-infty}x^3*ln((x^2*(3+2/x^2))/(x^4(2-sqrt(3)/x^4)))$
Semplificando un po' si ottiene che $\lim_{x \to \-infty}x^3*ln((1*(3+2/x^2))/(x^2(2-sqrt(3)/x^4)))$ = $\lim_{x \to \-infty}x^3*ln 0$
Siccome il logaritmo di $0$ fa $\-infty$, Si ottiene che $\lim_{x \to \-infty}x^3*ln 0$= $\-infty$*( $\-infty$)= $\infty$
Ora la mia domanda è: il procedimento e il risultato sono corretti?

Mi serve urgentemente aiuto
Miglior risposta
Mi servirebbe urgentemente la traduzione di una versione di latino

Come disegnare la figura di questo problema? (242475) (242477)
Miglior risposta
Ciao, ho un problema: dovrei disegnare la figura di un problema di geometria:
Nel rettangolo ABCD, il perimetro è di 168 cm e la base supera di 12 cm l'altezza. Determina l'area del rettangolo. Considera le proiezioni P e Q di D e B sulla diagonale AC e il punto medio M del lato AB. Calcola l'area del triangolo PQM.
Come dovrei impostare i vertici? In senso orario o antiorario o altro ordine? Dovrei tracciare la diagonale, ma poi dove devo mettere i punti P e Q?
Grazie in anticipo! :)
Esercizi radicali quadratici doppi (242535)
Miglior risposta
Mi dareste una mano con il numero 363? La prof ha sbadatamente assegnato questo esercizio non avendo spiegato questo argomento
Vi ringrazio in anticipo, una buona giornata
363 = (√(doppia)4+√12- √12)*(√3-1)+(1-√3)^2 RISULTATO = 0
Data un'applicazione lineare $A:X->Y$ su uno spazio di dimensione finita ed il seguente lemma:
siano $y_1, y_2, ... , y_k$ vettori linearmente indipendenti in $Y$ e
siano $x_1, x_2, ... , x_k$ vettori $in X$ tali che $A(x_i)=y_i, AAi=1..k$, ossia $x_i in A^(-1)(y_i)$
allora $x_1, x_2, ... , x_k$ sono linearmente indipendenti
non mi torna questa cosa $x_i in A^(-1)(y_i)$ NON DOVREBBE ESSERE $x_i in A^(-1)(Y)$
Se non sbaglio $A^(-1)(y_i)=x_i$ per cui si scrive il simbolo ...
Ciao a tutti! Mi potreste spiegare come non confondere e capire quando usare El preterito perfecto e el indefinido ?

Qualcuno può suggerirmi una dispensa buona riguardo all'intero corso di analisi 1 per la facoltà di ingegneria?

Ciao a tutti.
Ho da poco iniziato a studiare fisica e matematica quindi sono un principiante e volevo chiedere se qualcuno può illuminarmi su una piccola dimostrazione. Sul mio libro di meccanica è riportata una figura simile a quella sottostante:
Il punto O al centro (al di sotto dell'angolo) risulta in equilibrio statico se le tre masse soddisfano la relazione:
$m_3^2=m_1^2+m_2^2+2m_1m_2cos(\beta)$
Questa relazione viene ricavata nel modo seguente:
Considerando i tre vettori in O ...

Salve, vorrei sapere se i calcoli della pos. e neg. di queste funzioni sono corretti.
1) f(x) (2x-1)/(x-3) >=0
2x-1 >=0 -> x > 1/2
x - 3 > 0 -> x > 3
POSITIVITA'
x 3
NEGATIVITA'
1/2 < x < 3;
2) f(x) (x-3)/(x^2-4) >=0
x - 3 >=0 -> x>=3
x^2 - 2 > 0 -> x < - 2 V x > 2
POSITIVITA'
-2 < x < 2 V x >= 3
NEGATIVITA'
x < -2 V 2< x < 3
Grazie

Salve a tutti. Sono bloccato su questo esercizio.
Si consideri la forma differenziale, dipendente dalla funzione g(y) di classe C1
\begin{equation*}
\omega = y\cos(y^2)e^{xy} dx + xe^{xy}g(y) − 2y\sin(y^2)e^{xy} + \frac{1}{y} dy
\end{equation*}
Mi si chiede di trovare una funzione g(y) tale che la forma sia esatta in E = {(x, y) :y < 0. la risposta è:
\begin{equation*}
g(y) = cos(y^2)
\end{equation*}
Sono però bloccato e non riesco a procedere. La mia idea è quella di calcolare gli ...
Buonasera, ho un problema con lo svolgimento di un limite. Sostanzialmente è un limite con forma indeterminata $oo/oo$ che "scomponendolo" si dovrebbe arrivare a $-1/2$ ma purtroppo io arrivo solo a $1/2$, e non capisco dove lascio il segno e cosa sbaglio.
Questo è il limite:
$\lim_{x \to \-infty}sqrt(x^2-25)/(2x+9)$ = $\lim_{x \to \-infty}(x*sqrt(1-25/x^2))/(x*(2+9/x)$ Semplifico le x e dovrebbe rimanare $\lim_{x \to \-infty}sqrt(1-25/x^2)/((2+9/x))$ = $1/2$ ma il risultato dovrebbe venire $-1/2$
Se qualcuno ...

Una formica puntiforme si muove sul piano cartesiano, partendo dal punto A = (1, 0), e vuole raggiungere il punto B = (2, 0).
E' però vincolata a muoversi su una pedana della forma di un anello centrato in (0, 0) di raggi 1 e 2 e, relativamente ad essa, si può muovere con velocità unitaria in direzione qualsiasi.
La pedana ruota in senso antiorario con velocità uniforme in modo da compiere [tex]\omega[/tex] giri in un tempo unitario, con \(\displaystyle 0 \leq \omega \leq 1 \). Qual è il tempo ...
