Forum
Domande e risposte su qualsiasi materia per scuole medie, superiori e università da parte della community di studenti.
Domande e risposte
Ordina per
In evidenza
Una portata massica di 1000 kg/h di azoto (massa molecolar e: MW = 28 kg/kmol, k = 1,4)
espande in una turbina dalle condizioni iniziali T= 1000 K e p1= 8 bar fino alla pressione p2= 1,5 bar secondo una trasformazione adiabatica reversibile. Valutare la temperatur a alla fine della espansione. Sapendo che la turbina è collegata ad un generatore elettrico con rendimento elettrico= 0,85, determinare la potenza elettrica che il generatore è in grado ...
Salve... sto studiando Analisi Matematica e nello studio di un esercizio mi sono venuti dei dubbi dato che non ho ancora ricevuto alcune proprietà..
L'argomento riguarda gli "o piccolo" e l'esercizio è il seguente:
o( (x-1)^3 )
io ho risolto cosi:
ho risolto il cubo ==> o(x^3 - 3x^2 + 3x - 1) da qui non ho avuto alcuna precisazione su come si risolva
da qui parte la domanda:
questo diventa : o(x^3) - o(3x^2) + o(3x) - o(1) ???? (1° domanda)
(2°domanda): se pur fosse cosi, o(1) non viene ...
Problema (86305)
Miglior risposta
mi servirebbe aiuto con questo problema l area di un parallelogramma è di 8100 cm e il perimetro e di 1080 cm e il lato minore e 2 terzi del maggiore calcola le misure delle altezze relative ai dati grazie
Salve ragazzi,
ho un problema con la verifica di questo problema, in realtà è quasi una curiosità:
Dati P=(1,2,0) e Q=(3,1,1) determinare le equazioni parametriche/cartesiane di r per P e Q.
Dunque, trovato il vettore PQ impongo il passaggio della retta per P (e parallela a PQ):
mi trovo il seguente sistema (eq.parametriche):
x=1+2t
y=2-t
z=t
Ora, per determinare l'eq.cartesiana di r, mi occorrono una o due equazioni e, soprattutto, perché?
Io avevo trovato, semplicemente x+2y-5=0, ma ho il ...
Prima domanda per me! Mi preparo per l'orale di geometria di domani
Ho questo endomorfismo: {f(x,y,z,t) € R^4| x+y+2z=x+3t)
Devo calcolarne dimensione nucleo, immagine e una base!
Per tutti gli endomorfismi classici f(x,y,z,t)=(x+y,y+z,x+t,z+t) ad esempio non ho problemi...ma con quello sopra entro un po nel pallone!
Grazie a tutti anticipatamente
Problemi di Geometria (86300)
Miglior risposta
L'area di un rombo e' 25,20 m2 e la diagonale minore misura 5,6 m.Calcola il perimetro del rombo.Determina inoltre la differenza fra questo perimetro e quello di un quadrato equivalente al rombo.
(21,2 m; 1,12 m)
però sono riuscita fino ad un punto, cioe':
25,20:5,6 = 4,5
4,5x2= 9
5,6:2 = 2,8
2,8x2,8= 7,84
9:2=4,5
4,5x4,5= 20,25
20,25 + 7,84 = 28,09
rad quadrata 28,09 = 5,3
5,3 x 4 = 21,2
Ciao a tutti!
Ho incontrato qualche problema nello svolgimento di questo problema di geometria di cui non ho soluzione. La traccia del problema è la seguente:
Rispetto ad un sistema di riferimento ortonormale, si consideri il cono circolare retto $\Theta$ di asse
$a$ : $ { ( x_1 = 1 + 2t ),( x_2 = -1 - t ),( x_3 = 1 - 2t):} $ e vertice $V = ((1),(-1),(1))$ e semiapertura $\pi /6$;
si indichi $P !in a $ e $P$ interno a $\Theta$.
Ho svolto l'esercizio trovando il vettore ...
Salve a tutti!
Stavo provando a svolgere un esercizio di algebra lineare la cui traccia è la seguente:
Sia $K$ un campo di caratteristica 2; si provi che $((\alpha, \beta),(\beta, \alpha))$ in $K^(2x2)$ è diagonalizzabile in $K$ se e solo se $\beta = 0$
Per prima cosa ho calcolato il polinomio caratteristico:
$det (A - \lambda I) = det ((\alpha - \lambda, \beta), (\beta, \alpha - \lambda)) = (\alpha - \lambda)^2 - \beta^2 = 0 $
Da cui si ricavano i seguenti autovalori:
$\lambda_1 = \alpha - \beta$ e $\lambda_2 = \alpha + \beta$
Se $\beta != 0 $, si hanno due radici distinte per cui ...
Premetto che è il primo esercizio che faccio in tal proposito e uno dei primi in generale sulle funzioni di più variabili, quindi potrei dire delle enormi boiate!
Esercizio. Determinare i punti critici di \(f(x,y)=x \sqrt[3]{y}\) e determinarne la natura.
Io lo sto svolgendo così, dov'è che sbaglio?
Ho trovato
\[\frac{ \partial }{\partial x} f(x,y)=\sqrt[3]{y}\]
\[ \frac{ \partial }{\partial y} f(x,y)=\frac{x}{3 \sqrt[3]{y^2})}\] se \(y \ne 0\)
Pongo quindi le derivate parziali uguali a ...
$\intintint_{V} \ 1/(x^2 + y^2 + z^2) dx\dy\dz$ con $\V={ z^2<=x^2 + y^2 <= 4z^2 , 1<= z + sqrt(x^2 + y^2)<= 3} $
Ragionando sullo svolgimento di questo integrale ho pensato di farlo per strati. Dalla prima disequazione, posso intuire che $\z>=0$ , in quanto $\ z^2<=x^2 + y^2 <= 4z^2 => z<=sqrt(x^2 + y^2)<= 4z$ , poiché dovendo essere la radice un valore positivo, allora anche $\z$ deve essere positivo! Quindi ponendo $\ rho=(x^2 + y^2)$ per il cambio in coordinate polari, avrò
$\ rho in [z, 2z] $ e $\ vartheta in [0, 2pi] $ . Ora il problema è come determinare gli estremi di ...
Stavo facendo un esercizio sugli estremi vincolati di una funzioni in due variabili e mi son venuti diversi dubbi. Il testo è questo: Sia $\f(x, y) = e^(xy^2+x^2y+xy)$ e sia $\ D={(x,y)in R^2 : xy<=1} $
(52) Trovare eventuali punti stazionari liberi di f interni a D e studiarne la
natura.
(53) Trovare i punti stazionari vincolati di f sul bordo di D.
(54) Trovare (se ci sono) massimo e minimo assoluto di f su D.
(55) Studiare la natura dei punti trovati in (53) considerando solo il bordo di D.
(56) Dei punti che ...
Salve a tutti,
ho difficoltà nel capire questa dicitura.
Ho due punti nel piano $Q(x1,y1)$ e $Q'(x1,y1)$.
A partire da ciò ho bisogno di trovare la terna$a,b,c$ che individua la retta $r:ax+by+c=0$ passante per id ue punti $Q$ e $Q'$.
Il problema mi dice che se i due punti condividono la stessa ascissa ovvero sono allineati con l'asse dell ordinate, allora la reta $r$ è parallela all'asse $y$ e sarà individuata ...
Salve a tutti,
volevo chiedervi una mano riguardo ad un passo del mio testo di Analisi 2.
Si parla di derivate direzionali di funzioni $f:A rarr RR$ con $A sube RR^n$ aperto. Ad un certo punto dice che
Nel caso in cui la funzione è derivabile lungo la direzione del vettore $v=e_i$, i=1,...n allora f si dice parzialmente derivabile rispetto a $x_i$. Il limite si chiama derivata parziale della funzione f rispetto alla variabile $x_i$ nel punto ...
La diagonale di un trapezio isoscele misura 117 m e la base maggiore 136 m. Sapendo che la differenza fra le due basi è uguale a 56 m, calcola il perimetro e l'area del trapezio.
(322 m; 4860 m2)
Buongiorno ragazzi/e, stavo cercando un esorcista dislessico, e volevo sapere se per caso sapevate dove si potesse acquistare, usando come metodo di pagamento PayPal o PostePay, grazie 1000 a tutti!
Ciao
Federico :)
Sto vedendo i radicali doppi, ma non mi e' chiaro questa uguaglianza:
$ sqrt(a+sqrt(b) ) =(sqrt(a+sqrt(a^2-b) ) /2)+(sqrt(a-sqrt(a^2-b) ) /2) $
Un problema cita:
" due dischi sono allineati su un asse verticale passante per il loro centro. All'inizio il primo disco ruota con valocità $w$ il secondo è fermo . Po al tempo $t$ il secondo è messo a contatto con il primo e tra i due c'è attrito agente su ciascun disco e ha modulo costante uguale a $\tau$ .SE un motore mantiene costante la velocità angolare del primo disco calcolare il lavoro del motore per portare i due dischi a ruotare insieme a ...
Problema geometria piana (86296)
Miglior risposta
l'altezza di un rettangolo è uguale ai 3/5 della base e la base supera l'altezza di 14 cm.Calcola il perimetro e l'area del rettangolo
Salve a tutti, nell'ultimo appello avevo un esercizio di cui non riesco a venire a capo. Eccolo qua:
Sia dato il segnale periodico $ x(t)=(3A)/4*sin (pi*B*t)+A/4*sin(3*pi*B*t) $. Calcolare periodo del segnale, trasformata serie di Fourier, e il rapporto in dB tra la potenza associata alla fondamentale e quella alla terza armonica.
Allora per il primo quesito semplicemente: $ T_1=2/B $ ; $ T_2=2/(3B) $ => $ T=2/(B) $
Per il secondo, essendo un segnale dispari posso utilizzare la formula semplificata, ...
Ciao a tutti, in un compito passato del mio professore ho trovato questo esercizio.
Determinare $ A^2016 $ dove $ A= ( ( sqrt(2)/2 , sqrt(2)/2 ),( -sqrt(2)/2 , sqrt(2)/2 ) ) $ .
Il risultato è $ A= ( ( 1 , 0 ),( 0 , 1 ) ) $ .
Lui dice di applicare il teorema di Hamilton-Cayley, ma in questo modo non trovo $ A^2 $ ? Io ho provato ad applicarlo seguendo vari esempi etc ma trovo comunque la matrice elevata al quadrato e non elevata a 2016... Dovrebbe essere un esercizio banale, ma io non lo capisco.
Grazie per l'aiuto.